Control power in controlled hybrid teleportation between a discrete-variable state and a continuous-variable state under decoherence effects

Author affiliations

Authors

  • Cao Thi Bich Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Giang Vo, Hanoi 11108, Vietnam https://orcid.org/0000-0002-1663-779X

DOI:

https://doi.org/10.15625/0868-3166/23303

Keywords:

hybrid teleportation, hybrid entanglement, DV state, CV state, control power

Abstract

One of our works, [C. T. Bich and N. B. An, Pramana – Journal of Physics 96 (2022) 33], proposed a linear optics scheme for teleporting two different types of qubits. This was achieved by using a four-particle hybrid entangled state and controlled by two controllers operating in two distinct types of Hilbert spaces: a finite-dimensional space and an infinite-dimensional space. In this work, the power of the two controllers is assessed through the analysis of the average fidelity of the teleportation protocol in their absence. It is worth noting that the controller holding a discrete-variable state consistently exhibits power that is equal to or greater than that of the controller holding a continuous-variable state.

Downloads

Download data is not yet available.

References

[1] E. Schrödinger, Die gegenwärtige situation in der quantenmechanik, Naturwissenschaften 23 (1935) 807.

[2] A. K. Pati, P. Parashar and P. Agrawal, Quantum superdense coding with GHZ-class states, Phys. Rev. A 72 (2005) 012329.

[3] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci. 560 (2014) 7.

[4] M. Hillery, V. Bužek and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59 (1999) 1829.

[5] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70 (1993) 1895.

[6] N. B. An, Teleportation of coherent-state superpositions within a network, Phys. Rev. A 68 (2003) 022321.

[7] J. Lee, H. Min and S. D. Oh, Quantum teleportation with partially entangled resources, Phys. Rev. A 66 (2002) 052318.

[8] M. Ikram, S. Y. Zhu and M. S. Zubairy, Teleportation of entangled coherent states, Phys. Rev. A 62 (2000) 022307.

[9] G. Rigolin, Teleportation of entangled states and quantum information splitting, Phys. Rev. A 71 (2005) 032303.

[10] X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor et al., Quantum teleportation over 143 kilometres using active feed-forward, Nature 489 (2012) 269.

[11] M. A. Nilson, E. Knill and R. Laflamme, Quantum computing with small errors, Nature 396 (1998) 52.

[12] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter and A. Zeilinger, Experimental quantum teleportation, Nature 390 (1997) 575.

[13] A. Einstein, B. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47 (1935) 777.

[14] D. M. Greenberger, M. A. Horne and A. Zeilinger, Going beyond bell's theorem, in Bell's Theorem, Quantum Theory and Conceptions of the Universe, Kluwer (1989), DOI.

[15] W. Dür, G. Vidal and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62 (2000) 062314.

[16] H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86 (2001) 910.

[17] A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58 (1998) 4394.

[18] F.-G. Deng, C.-Y. Li, Y.-S. Li, H.-Y. Zhou and Y. Wang, Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement, Phys. Rev. A 72 (2005) 022338.

[19] C. P. Yang, S. I. Chu and S. Han, Quantum teleportation in josephson-junction systems, Phys. Rev. A 70 (2004) 022329.

[20] P. Zhou, X.-H. Li, F.-G. Deng and H.-Y. Zhou, Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel, J. Phys. A: Math. Theor. 40 (2007) 13121.

[21] T. Gao, F. L. Yan and Y. C. Li, Controllable quantum teleportation, Europhys. Lett. 84 (2008) 50001.

[22] P. Zhou, X. H. Li and F. G. Deng, Quantum teleportation with a mixed state, J. Phys. A: Math. Theor. 40 (2007) 13121.

[23] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling and G. J. Milburn, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys. 79 (2007) 135.

[24] E. Knill, L. Laflamme and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409 (2001) 46.

[25] A. Furusawa et al., Unconditional quantum teleportation, Science 282 (1998) 706.

[26] P. van Loock and S. L. Braunstein, Multipartite entanglement for continuous variables: A quantum teleportation network, Phys. Rev. Lett. 84 (2000) 3482.

[27] X. Wang, Entanglement in the quantum heisenberg XY model, Phys. Rev. A 64 (2001) 022302.

[28] S. J. van Enk and O. Hirota, Entangled coherent states: Teleportation and decoherence, Phys. Rev. A 64 (2001) 022313.

[29] P. van Loock et al., Hybrid quantum repeater using bright coherent light, Phys. Rev. Lett. 96 (2006) 240501.

[30] P. van Loock, Hybrid quantum information processing, Laser Photonics Rev. 5 (2011) 167.

[31] A. Ourjoumtsev et al., Increasing entanglement between gaussian states by coherent photon subtraction, Phys. Rev. Lett. 98 (2007) 030502.

[32] A. Guccione et al., Connecting heterogeneous quantum networks by hybrid entanglement swapping, Sci. Adv. 6 (2020) eaba4508.

[33] S. Takeda and A. Furusawa, Optical hybrid quantum information processing, in Quantum Teleportation and Entanglement, Springer (2014).

[34] F. Dell'Anno, S. De Siena and F. Illuminati, Non-gaussian quantum states

in continuous variable quantum information, Phys. Rep. 428 (2006) 53.

[35] Z.-B. Chen et al., Maximal entanglement

between a pair of atomic ensembles by optical selection rules, Phys. Rev. Lett. 88 (2002) 040406.

[36] H. Jeong et al., Generation of hybrid entanglement of light, Nat. Photonics 8 (2014) 564.

[37] S.-W. Lee and H. Jeong, Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid

qubits, Phys. Rev. A 87 (2013) 022326.

[38] M. He, S. Hu, W. Wang and Q. Liao, Enhancing quantum teleportation using hybrid entangled states and non-gaussian operations, Sci. Rep. 12 (2022) 17288.

[39] C. T. Bich and N. B. An, Teleporting DV qubit to CV qubit and vice versa via DV-CV hybrid entanglement across lossy environment supervised simultaneously by both DV and CV controllers, Pramana – J. Phys. 96 (2022) 33.

[40] S. Massar and S. Popescu, Optimal extraction of information from finite quantum ensembles, Phys. Rev. Lett. 74 (1995) 1259.

Downloads

Published

09-12-2025

How to Cite

[1]B. Cao Thi, “Control power in controlled hybrid teleportation between a discrete-variable state and a continuous-variable state under decoherence effects”, Comm. Phys., vol. 35, no. 4, p. 301, Dec. 2025.

Issue

Section

Papers

Funding data

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.