Control power in controlled hybrid teleportation between a discrete-variable state and a continuous-variable state under decoherence effects
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/23303Keywords:
hybrid teleportation, hybrid entanglement, DV state, CV state, control powerAbstract
One of our works, [C. T. Bich and N. B. An, Pramana – Journal of Physics 96 (2022) 33], proposed a linear optics scheme for teleporting two different types of qubits. This was achieved by using a four-particle hybrid entangled state and controlled by two controllers operating in two distinct types of Hilbert spaces: a finite-dimensional space and an infinite-dimensional space. In this work, the power of the two controllers is assessed through the analysis of the average fidelity of the teleportation protocol in their absence. It is worth noting that the controller holding a discrete-variable state consistently exhibits power that is equal to or greater than that of the controller holding a continuous-variable state.
Downloads
References
[1] E. Schrödinger, Die gegenwärtige situation in der quantenmechanik, Naturwissenschaften 23 (1935) 807.
[2] A. K. Pati, P. Parashar and P. Agrawal, Quantum superdense coding with GHZ-class states, Phys. Rev. A 72 (2005) 012329.
[3] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci. 560 (2014) 7.
[4] M. Hillery, V. Bužek and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59 (1999) 1829.
[5] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70 (1993) 1895.
[6] N. B. An, Teleportation of coherent-state superpositions within a network, Phys. Rev. A 68 (2003) 022321.
[7] J. Lee, H. Min and S. D. Oh, Quantum teleportation with partially entangled resources, Phys. Rev. A 66 (2002) 052318.
[8] M. Ikram, S. Y. Zhu and M. S. Zubairy, Teleportation of entangled coherent states, Phys. Rev. A 62 (2000) 022307.
[9] G. Rigolin, Teleportation of entangled states and quantum information splitting, Phys. Rev. A 71 (2005) 032303.
[10] X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor et al., Quantum teleportation over 143 kilometres using active feed-forward, Nature 489 (2012) 269.
[11] M. A. Nilson, E. Knill and R. Laflamme, Quantum computing with small errors, Nature 396 (1998) 52.
[12] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter and A. Zeilinger, Experimental quantum teleportation, Nature 390 (1997) 575.
[13] A. Einstein, B. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47 (1935) 777.
[14] D. M. Greenberger, M. A. Horne and A. Zeilinger, Going beyond bell's theorem, in Bell's Theorem, Quantum Theory and Conceptions of the Universe, Kluwer (1989), DOI.
[15] W. Dür, G. Vidal and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62 (2000) 062314.
[16] H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86 (2001) 910.
[17] A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58 (1998) 4394.
[18] F.-G. Deng, C.-Y. Li, Y.-S. Li, H.-Y. Zhou and Y. Wang, Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement, Phys. Rev. A 72 (2005) 022338.
[19] C. P. Yang, S. I. Chu and S. Han, Quantum teleportation in josephson-junction systems, Phys. Rev. A 70 (2004) 022329.
[20] P. Zhou, X.-H. Li, F.-G. Deng and H.-Y. Zhou, Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel, J. Phys. A: Math. Theor. 40 (2007) 13121.
[21] T. Gao, F. L. Yan and Y. C. Li, Controllable quantum teleportation, Europhys. Lett. 84 (2008) 50001.
[22] P. Zhou, X. H. Li and F. G. Deng, Quantum teleportation with a mixed state, J. Phys. A: Math. Theor. 40 (2007) 13121.
[23] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling and G. J. Milburn, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys. 79 (2007) 135.
[24] E. Knill, L. Laflamme and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409 (2001) 46.
[25] A. Furusawa et al., Unconditional quantum teleportation, Science 282 (1998) 706.
[26] P. van Loock and S. L. Braunstein, Multipartite entanglement for continuous variables: A quantum teleportation network, Phys. Rev. Lett. 84 (2000) 3482.
[27] X. Wang, Entanglement in the quantum heisenberg XY model, Phys. Rev. A 64 (2001) 022302.
[28] S. J. van Enk and O. Hirota, Entangled coherent states: Teleportation and decoherence, Phys. Rev. A 64 (2001) 022313.
[29] P. van Loock et al., Hybrid quantum repeater using bright coherent light, Phys. Rev. Lett. 96 (2006) 240501.
[30] P. van Loock, Hybrid quantum information processing, Laser Photonics Rev. 5 (2011) 167.
[31] A. Ourjoumtsev et al., Increasing entanglement between gaussian states by coherent photon subtraction, Phys. Rev. Lett. 98 (2007) 030502.
[32] A. Guccione et al., Connecting heterogeneous quantum networks by hybrid entanglement swapping, Sci. Adv. 6 (2020) eaba4508.
[33] S. Takeda and A. Furusawa, Optical hybrid quantum information processing, in Quantum Teleportation and Entanglement, Springer (2014).
[34] F. Dell'Anno, S. De Siena and F. Illuminati, Non-gaussian quantum states
in continuous variable quantum information, Phys. Rep. 428 (2006) 53.
[35] Z.-B. Chen et al., Maximal entanglement
between a pair of atomic ensembles by optical selection rules, Phys. Rev. Lett. 88 (2002) 040406.
[36] H. Jeong et al., Generation of hybrid entanglement of light, Nat. Photonics 8 (2014) 564.
[37] S.-W. Lee and H. Jeong, Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid
qubits, Phys. Rev. A 87 (2013) 022326.
[38] M. He, S. Hu, W. Wang and Q. Liao, Enhancing quantum teleportation using hybrid entangled states and non-gaussian operations, Sci. Rep. 12 (2022) 17288.
[39] C. T. Bich and N. B. An, Teleporting DV qubit to CV qubit and vice versa via DV-CV hybrid entanglement across lossy environment supervised simultaneously by both DV and CV controllers, Pramana – J. Phys. 96 (2022) 33.
[40] S. Massar and S. Popescu, Optimal extraction of information from finite quantum ensembles, Phys. Rev. Lett. 74 (1995) 1259.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Communications in Physics

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers VAST01.03/26-27


