Mini-review. Perspective on biomass derived bio-oil valorization in Vietnam

Huynh Minh Thuan, Duong Thanh Long, Nguyen Huynh Hung My, Phan Minh Quoc Binh, Nguyen Huu Luong

Abstract


Various  strategies  for  biomass derived bio-oil valorization  as  a  renewable  feedstock  for  chemicals  and  fuels  are described.  Starting  from  the  role  of  renewable  resources  (e.g.  biomass,  bio-oil)  in  the  future  energy  and  chemical community, an overview on current energy supply situation and the role of biomass and related products are discussed. Later,  summary  of  bio-oil  production  from  biomass  and  the  need  for  upgrading  to  further  uses  is  represented. Subsequently,  the  valorization  of  bio-oil  as  fuels  and  feedstocks  are  intensively  summarized,  showing  the  potential utilization  of  bio-oils  via  such  processes.  Some  studies  on  biomass  assessment,  bio-oil  production  and  upgrading  in Vietnam  are  also  given.  Finally,  some  concluding  remarks  address  the  perspectives  for  further  research  and
development to overcome future challenges.

Keywords. Bio-oil valorization, bio-oil/diesel emulsion, co-feeding, deoxygenation, refinery units.


Keywords


Bio-oil valorization, bio-oil/diesel emulsion, co-feeding, deoxygenation, refinery units

Full Text:

PDF

References


BP Statistical Review of World Energy, June 2015. Available from: www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy.html [Accessed: 2015-06-20].

H. Wang, J. Male, Y. Wang. Recent Advances in Hydrotreating of Pyrolysis Bio-Oil and Its Oxygen-Containing Model Compound, ACS Catalysis, 3, 1047-1070 (2013).

K. Kuparinen, J. Heinimö, E. Vakkilainen. World's largest biofuel and pellet plants – geographic distribution, capacity share, and feedstock supply. Biofuels Bioproducts and Biorefining, 8, 747-754 (2014).

D. Carpenter, TL. Westover, S, Czernik, W. Jablonski. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chemistry, 16, 384-406 (2014).

RS. Saxena, DK. Adhikari, HB. Goyal. Biomass-based energy fuel through biochemical routes: A review. Renewable Sustainable Energy Review, 13, 167-178 (2009).

Phan, B. M. Q., L. T. Duong, V. D. Nguyen, T. B. Tran, M. H. H. Nguyen, L. H. Nguyen, D. A. Nguyen, and L. C. Luu. Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis. Biomass and Bioenergy, 62, 74-81 (2014).

G.W. Huber, J.A. Dumesic. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal. Today, 111, 119-132 (2006).

A. V. Bridgwater, G. V. C. Peacocke. Fast pyrolysis processes for biomass. Renewable Sustainable Energy Rev., 4, 1-73 (2000).

G.W. Huber, S. Iborra, A. Corma. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev., 106, 4044-4098 (2006).

D.C. Elliott, P. Biller, A.B. Ross, A.J. Schmidt, S.B. Jones. Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour. Technol., 178, 147-156 (2015).

JR. Regalbuto. JR. Cellulosic biofuels – got gasoline?. Science, 325, 822-824 (2009).

T.M. Huynh, L.T. Duong, N.H. Le, B.M.Q. Phan, H.C.T. Phan, M.M.D. Vo, L.D. Nguyen. Biomass – the second generation feedstock for bioethanol production. Petrovietnam Journal, 6, 67-73 (2011).

Elliott DC. Historical developments in hydroprocessing bio-oils. Energy Fuels., 21, 1792–1815 (2007).

J. Akhtar, N.A.S. Amin. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renewable Sustainable Energy Rev., 15, 1615-1624 (2011).

D. Meier, B. van de Beld, A.V. Bridgwater, D.C. Elliott, A. Oasmaa, F. Preto. State-of-the-Art of Fast Pyrolysis in IEA Bioenergy Member Countries. Renewable Sustainable Energy Rev,. 20, 619-641 (2013).

Gust S. Combustion experiences of flash pyrolysis fuel

in intermediate size boilers. In: Bridgwater AV, Boocock DGB, editors. Developments in Thermo- chemical Biomass Conversion, London: Blackie Academic & Professional, 481–8 (1997).

Strenziok R, Hansen U, Kunster H. Combustion of bio-oil in a gas turbine. In: Bridgwater AV, editor. Progress in Thermochemical Biomass Conversion, Oxford: Blackwell Science, 1452-8 (2001).

Y. Solantausta, N. O. Nylund, M. Westerholm, T. Koljonen, A. Oasmaa. Wood-Pyrolysis oil as fuel in a diesel-power plant. Bioresource Technology, 46, 177-88 (1993).

A.V. Bridgwater. Upgrading biomass fast pyrolysis liquids. Environ. Prog. Sustainable Energy, 31, 261-268 (2012).

I. Graça, J.M. Lopes, H.S. Cerqueira, M.F. Ribeiro. Bio-oils Upgrading for Second Generation Biofuels. Ind. Eng. Chem. Res., 52, 275-287 (2013).

P. M. Mortensen, J.D. Grunwaldt., P.A. Jensen, K.G. Knudsen, A.D. Jensen, A.D. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal., A, 407, 1-19 (2011).

D.A. Ruddy, J.A. Schaidle, J.R. Ferrell, J. Wang, L. Moens, J.E. Hensley. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis: catalyst development through the study of model compounds. Green Chem., 16, 454-490 (2014).

J. Wildschut, F.H. Mahfud, R.H. Venderbosch, H.J. Heeres. Hydrotreatment of Fast Pyrolysis Oil Using Heterogeneous Noble-Metal Catalysts. Ind. Eng. Chem. Res., 48, 10324-10334 (2009).

T. M. Huynh, U. Armbruster, M.M. Pohl, M. Schneider, J. Radnik, DL Hoang, B.M.Q. Phan, D. A. Nguyen, A. Martin. Hydrodeoxygenation of phenol as a model compound for bio-oil on non-noble bimetallic nickel-based catalysts . ChemCatChem, 6, 1940-1951 (2014).

T.M. Huynh, U. Armbruster, B.M.Q. Phan, D.A. Nguyen, A. Martin. The influence of cobalt in bimetallic Ni-Co catalyst supported on H-Beta for phenol hydrodeoxygenation. Chimica Oggi - Chemistry Today, 32, 40-44 (2014).

T.M. Huynh, U. Armbruster, L.H. Nguyen, D.A. Nguyen, A. Martin. Hydrodeoxygenation of bio-oil on bimetallic catalysts: from model compound to real feed. Journal of Sustainable Bioenergy Systems, 5, 151-160 (2015).

Huynh TM, Armbruster U, Martin A. Deoxygenation of Liquefied Biomass. In: Cavani F, Albonetti S, Basile F, Gandini A, editors. Chemicals and Fuels from Bio-Based Building Blocks, Wiley-VCH Verlag GmbH & Co. KGaA, 403-430 (2016).

T. S. Nguyen, T. L. Duong, T. T. T. Pham, D. T. Nguyen, P.N. Le, H.L. Nguyen, T.M. Huynh. Online catalytic deoxygenation of vapour from fast pyrolysis of Vietnamese sugarcane bagasse over sodium-based catalysts. Journal Analytical and Applied Pyrolysis, 127, 436-443 (2017).

Radlein D. Study of levoglucosan production –A review. In: Bridgwater AV, editor. Fast Pyrolysis of Biomass: A Handbook, 2. Newbury, U.K.: CPL Press, 205–41 (2002).

J.A. Stradal, G. Underwood. Process for producing hydroxyacetaldehyde. U.S. Patent 5,393,542 (1995).

A. Robson. DynaMotive 2000 Progress Report, PyNe Newsletter, 10 (2000).

Oehr K, Acid emission reduction. U.S. Patent 5,458,803 (1995).

E. H. Fini, S. Yang, S. Xiu, A. Shahbazi. Transportation Research Board, 89th Annual Meeting January 13-17 Washington, D.C. (2010).

T. P. Vispute, G. W. Huber. Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. Green Chemistry, 11, 1433-1445 (2009).

J. D. Adjaye, N. N. Bakhshi. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Fuel Processing Technology. Fuel Processing Technology, 45, 185-202 (1995).

S. Vitolo, B. Bresci, M. Seggiani, M.G. Gallo. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading–regenerating cycles. Fuel, 80, 17-26 (2001).

M. Al-Sabawa, J. Chen, S. Ng. Fluid catalytic cracking of biomass-derived oils and their blends with petroleum feedstocks: a review. Energy Fuels, 26, 5355-5372 (2012).

R. Marinangeli, T. Marker, J. Petri, T. Kalnes, M. McCall, D. Mackowiac, B. Jerosky, B. Regan, L. Nemeth, M. Krawczyk, S. Czernik, D. Elliott, D. Shonnard. Opportunities for Biorenewables in Oil Refineries. Report No. DE-FG36-o5GO15085, UOP (2006).

http://www.biocoup.com/. Accessed on 2016:09:09.

S. Karatzos, J.D. McMillan, JN. Saddler, 2014. The potential and Challenges of Drop-in fuels, IEA bioenergy task 39. Available from: http://task39.org/2014/01/the-potential-and-challenges-of-drop-in-fuels-members-only/. [Accessed: 2016-09-20].

D. C. Elliott, P. Biller, A. B. Ross, A. J. Schmidt, S. B. Jones. Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresource Technology, 178, 147-156 (2015).

T.V. Choudhary, CB. Phillips. Renewable fuels via catalytic hydrodeoxygenation. Applied Catalysis A: General, 397, 1-12 (2011).

DC. Elliott, E.G. Baker, J. Piskorz, DS. Scott, Y. Solantausta. Production of liquid hydrocarbon fuels from peat. Energy Fuels, 2, 234-235 (1988).

W. Baldauf, U. Balfanz, M. Rupp. Upgrading of flash pyrolysis oil and utilization in refineries. Biomass Bioenergy, 7, 237-244 (1994).

TP. Vispute, H. Zhang, A. Sanna, R. Xiao, G.W. Huber. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science, 330, 1222-1227 (2010).

RJ. French, J. Stunkel, RM. Baldwin. Mild hydrotreating of bio-oil: effect of reaction severity and fate of oxygenated species. Energy Fuels, 25, 3266-3274 (2011).

F. de Miguel Mercader, MJ. Groeneveld, SRA Kersten, NWJ. Way, CJ. Schaverien, JA. Hogendoorn. Production of advanced biofuels: co-processing of upgraded pyrolysis oil in standard refinery units. Applied Catalysis B: Environmental, 96, 57-66 (2010).

F. de Miguel Mercader, MJ. Groeneveld, SRA. Kersten, C. Geantet, G. Toussaint, NWJ. Way, CJ. Schaverien, KJA. Hogendoorn. Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units. Energy and Environmental Science, 4, 985-997 (2011).

F. de Miguel Mercader, PJJ. Koehorst. Competition between hydrotreating and polymerization reactions during pyrolysis oil hydrodeoxygenation. AIChE Journal, 57, 3160-3170 (2011).

G. Fogassy, N. Thegarid, G. Toussaint, AC. van Veen, Y. Schuurman, C. Mirodatos. Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units. Applied Catalysis B: Environmental, 96, 476-485 (2010).

T.M. Huynh, U. Armbruster, H. Atia, U. Bentrup, B.M.Q. Phan, R. Eckelt, L.H. Nguyen, D.A. Nguyen, A. Martin. Upgrading of bio-oil and subsequent co-processing under FCC conditions for fuel production. Reaction Chemistry & Engineering, 1, 239-251 (2016).

T. M. Huynh, U. Armbruster, A. Martin. Perspective on Co-feeding of Phenolic Compounds into Existing Refinery Units. In Phenolic Compounds - Natural Sources, Importance and Applications, INTECH Publisher, Chapter 11, 283-299 (2015).

D. Chiaramonti, M. Bonini, E. Fratini, G. Tondi, K. Gartner, AV. Bridgwater. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—Part 1 : emulsion production. Biomass Bioenergy, 25, 85-99 (2003).

D. Chiaramonti, M. Bonini, E. Fratini, G. Tondi, K. Gartner, AV. Bridgwater. HP. Grimm, I. Soldaini, A.Webster, A. Baglioni. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines. Part 2: tests in diesel engines. Biomass Bioenergy, 25, 101–11 (2003).

M. Ikura, M. Stanciulescu, E. Hogan. Emulsification of pyrolysis derived bio-oil in diesel fuel. Biomass Bioenergy, 3, 221-232 (2003).

M. Ikura, M. Slamak, H. Sawatzky. Pyrolysis liquid-in-diesel oil microemulsions. U.S.Patent 5, 820, 640 (1998).