Open Access Open Access  Restricted Access Subscription Access

Synthesis of new alkoxy substituted 4-piperidinobenzylidene malononitrile (PDCST) nonlinear optical chromophores

Nguyen Quoc Vuong, Kim Nakjoong, Tran Thi Phuong Thao, Nguyen Le Tuan, Tran Van Sung

Abstract


The new alkoxy-substituted 4-piperidinobenzylidene malononitrile (PDCST) nonlinear optical chromophores were synthesized for investigation into substitutional effect on electrooptic properties and response time. The concise four-step procedure afforded PDCST skeleton with various alkoxy-substituted groups such as methoxy, ethoxy and isobutoxy. Structures were confirmed by H, C-NMR and EI-MS spectroscopic analysis.

Keywords. Nonlinear optical chromophores, 4-piperidinobenzylidene malononitrile (PDCST), bromination; formylation; Buchwald-Hartwing, Knoevenagel condensation.

Keywords


Nonlinear optical chromophores, 4-piperidinobenzylidene malononitrile (PDCST), bromination; formylation; Buchwald-Hartwing, Knoevenagel condensation

References


Tsutsumi N. Molecular design of photorefractive polymers, Polymer Journal, 48, 571-588 (2016).

Köber S., Salvador M. and Meerholz K. Organic Photorefractive Materials and Applications, Adv. Mater., 23, 4725-4763 (2011).

Moerner W. E., Silence S. M. Polymeric photorefractive materials, Chem. Rev., 94, 127-155 (1994).

Kanis D. R., Ratner M. A., and Marks T. J. Design and Construction of Molecular Assemblies with Large Second-Order Optical Nonlinearities. Quantum Chemical Aspects, Chem. Rev., 94, 195-242 (1994).

P.Gunter and J. P. Huignard. Photorefractive Materials and Their Application, Springer Verlag, Berlin, Vol. I (1988), Vol. II (1989).

Zhang H., Huo F., Liu F., Chen Z., Liu J., Bo S., Zhen Z. and Qiu L. Synthesis and characterization of two novel second-order nonlinear optical chromophores based on julolidine donors with excellent electro-optic activity, RSC Adv., 6, 99743-99751 (2016).

Xu H., Yang D., Liu F., Fu M., Bo S., Liu X. and Cao Y. Nonlinear optical chromophores based on Dewar’s rules: enhancement of electro-optic activity by introducing heteroatoms into the donor or bridge, Phys. Chem. Chem. Phys., 17, 29679-29688 (2015).

Xu H., Zhang M., Zhang A., Deng G., Si P., Huang H., Peng C. C., Fu M., Liu J., Qiu L., Zhen Z., Bo S., Liu X. Novel second-order nonlinear optical chromophores containing multi-heteroatoms in donor moiety: Design, synthesis, DFT studies and electro-optic activities, Dyes and Pigments, 102, 142-149 (2014).

Wu W., Zhu Z., Qiu G., Ye C., Qin J. and Li Z. New hyperbranched second-order nonlinear optical poly(arylene-ethynylene)s containing pentafluoro-aromatic rings as isolation group: Facile synthesis and enhanced optical nonlinearity through Ar-ArF self-assembly effect. J. Polym. Sci. A Polym. Chem., 50, 5124-5133 (2012).

Chun H. N., Joo W. J., Kim N. J., Moon I. K., Kim Nakjoong. Applications of polymeric photorefractive material to reversible data storage and information processing, Journal of Applied Polymer Science, 89, 368-372 (2003).

Chun H., Moon I. K., Ho S. D., Sangyup S, Kim Nakjoong. The effect of the molecular structure of the chromophore on the photorefractive properties of the polymer systems with low glass transition temperatures, Journal of Material Chemistry, 12(4), 858 (2002).

Chun H., Moon I. K.. Shin D. H., Kim Nakjoong. Preparation of Highly Efficient Polymeric Photorefractive Composite Containing an Isophorone-Based NLO Chromophore, Chem. Mater., 13, 2813 (2003).

Hwang U. J., Choi C. S., N. Q. Vuong, Kim Nakjoong. Determination of the space charge Field amplitude in polymeric photorefractive polymers. Journal of Chemical Physics, 123(24), 244901 (2005).

Choi C. S., Nguyen Q. V., Kim Nakjoong. High-Performance Photorefractive Polymer Composit Doped With 2-Piperidino-5-thienyl Mononitrile Chromophore, Macromolecular Research, 18(3), 279-283 (2010).


Full Text: PDF

Refbacks

  • There are currently no refbacks.