A fluorescent chemodosimeter based on rhodamine derivative for detection of Hg(II) ions studied by using the density functional theory
Author affiliations
DOI:
https://doi.org/10.15625/10791Keywords:
Fluorescence, chemodosimeter, rhodamine, mercury, DTF, TD-DFTAbstract
The synthesis, characteristics and applications of the rhodamine derivative-based fluorescent chemodosimeter RT for detection of mercury ions have been studied at the B3LYP/LanL2DZ level of theory. The calculated results confirmed the presence of spirolactam ring in RT molecule. The Hg(II) ions reacted with RT to form RG, accompanied by the formation of guanidine ring and the spirolactam ring-opening in RG, turning on the fluorescence of RG. These results were in a good agreement with experimental investigations. It indicated that the quantum chemical calculations could be used well for the design, synthesis of the fluorescent chemodosimeter.
Keywords. Fluorescence, chemodosimeter, rhodamine, mercury, DTF, TD-DFT.
Downloads
References
M. Y. Chae, A. W. Czarnik. Mercury(II) and silver(I)
indication in water via enhanced fluorescence signaling, J. Am. Chem. Soc, 114(24), 9704-9705 (1992).
A. P. D. Silva, T. S. Moody and G. D. Wright. Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools, Analyst, 134(12), 2385-2393 (2009).
D. T. Quang, J. S. Kim. Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens, Chem. Rev 110(10), 6280-6301 (2010).
H. S. Jung, J. H. Han, Y. Habata, C. Kang and J. S. Kim. An iminocoumarin–Cu(II) ensemble-based chemodosimeter toward thiols, Chem. Commun., 47, 5142-5144 (2011).
J. S. Kim and D. T. Quang. Calixarene-Derived Fluorescent Probes, Chem. Rev., 107(9), 3780-3799 (2007).
S. H. Kim, H. S. Choi, J. Kim, S. J. Lee, D. T. Quang and J. S. Kim. Novel Optical/Electrochemical Selective 1,2,3-Triazole Ring-Appended Chemosensor for the Al3+ Ion, Org. Lett., 12(3), 560-563 (2010).
M. Kumar, N. Kumar, V. Bhalla, H. Singh, P. R. Sharma and T. Kaur. Naphthalimide Appended Rhodamine Derivative: Through Bond Energy Transfer for Sensing of Hg2+ Ions, Org. Lett., 13(6), 1422-1425 (2011).
M. H. Lee, T. V. Giap, S. H. Kim, Y. H. Lee, C. Kang, J. S. Kim.
A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of arhodamine 6G Schiff base, Chem. Commun., 46(9), 1407-1409 (2010).
D. T. Quang, N. V. Hop, N. D. Luyen, H. P. Thu, D. Y. Oanh, N. K. Hien, N. V. Hieu, M. H. Lee, J. S. Kim. A new fluorescent chemosensor for Hg2+ in aqueous solution, Luminescence, 28, 222-225 (2013).
N. K. Hien, P. T. Quy, N. T. Trung, V. Vien, D. V. Khanh, N. T. A. Nhung, D. T. Quang. A dansyldiethylenetriaminethiourea conjugate as a fluorescent chemodosimeter for Hg2+ ions in water media, Chem. Lett., 43, 1034-1036 (2014).
N. K. Hien, N. C. Bao, N. T. A. Nhung, N. T. Trung, P. C. Nam, T. Duong, J. S. Kim, D. T. Quang. A highly sensitive fluorescent chemosensor for simultaneous determination of Ag(I), Hg(II), and Cu(II) ions: Design, synthesis, characterization and application, Dyes. Pigm., 116, 89-96 (2015).
P. T. Quy, N. K. Hien, N. C. Bao, D. T. Nhan, D. V. Khanh, N. T. A. Nhung, T. Q. Tung, N. D. Luyen, D. T. Quang. A new rhodamine-based fluorescent chemodosimeter for mercuric ions in water media, Luminescence, 30(3), 325-329 (2015).
N. K. Hien, N. T. A. Nhung, H. Q. Dai, N. T. Trung, D. T. Quang. A fluorescent sensor based on dansyl-diethylenetriamine-thiourea conjugate: design, synthesis, characterization, and application, Vietnam Journal of Chemistry, 53(5e), 541-547 (2015).
J. Yang, Z. Lei, Z. Peng. A rhodamine B-based fluorescent sensor toward highly selective mercury (II) ions detection, Talanta, 150, 14-19 (2016).
C. Khwanchanok, C. Nathawut, Y. Peerada, T. Panumart. A highly selective ‘turn-on’ fluorescent sensor for Zn2+ based on fluorescein conjugates, Tetrahedron Lett., 57(10), 1146-1149 (2016).
A. D. Becke. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing, J. Chem. Phys., 104, 1040-1046 (1996).
A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648-5652 (1993).
C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev B37, 785-789 (1988).
M. J. Frisch, et al., Gaussian 09, Revision E.01, Gaussian, Inc; Wallingford, CT (2009).
R. F. W. Bader. A quantum theory of molecular structure and its applications, Chem. Rev., 91(5), 893-928 (1991).
M. J. Frisch et al. AIM 2000, designed by Friedrich Biegler-König. University of Applied Sciences. Germany: Bielefeld (2000).
D. N. Adhikesavalu, D. Mastropaolo, A. Camerman, N. Camerman. Two rhod¬amine derivatives: 9-[2-(ethoxycarbonyl)phenyl]-3,6-bis(ethyl¬amino)-2,7-di-methyl¬xanthyl¬ium chloride monohydrate and 3,6-di-amino-9-[2-(methoxy¬carbonyl)¬phenyl]xanthyl¬ium chloride trihydrate, Acta. Cryst C57, 657-659 (2001).
J. C. Miller and J. N. Miller. Statistics for analytical chemistry, second ed. Chichester, England: Ellis Horwood Limited (1998).
K. Saita, M. Nakazono, K. Zaitsu, S. Nanbo, H. Sekiya, Theoretical Study of Photophysical Properties of Bisindolylmaleimide Derivatives, J. Phys. Chem.B., 113, 8213-8220 (2009).
S. A. Hussain et al. An introduction to fluorescence resonance energy transfer (FRET). Science Journal of Physics Article ID sjp-268, 4 Pages, Doi: 10.7237/sjp/268 (2012).