Finite element analysis of guided wave dispersion in pipes with multichannel acquisition
Author affiliations
DOI:
https://doi.org/10.15625/0866-7136/23571Keywords:
ultrasonic guided waves, dispersion curves, finite element analysis, multichannel acquisition, pipeline inspection, nondestructive evaluationAbstract
Ultrasonic guided waves have become a key tool in nondestructive evaluation of pipelines, as they can travel long distances with low attenuation while maintaining high sensitivity to defects. Accurate modeling of their dispersion characteristics is essential for inspection design and signal interpretation. This study presents a finite element (FE) framework that advances beyond conventional eigenvalue-based analyses by directly simulating a realistic multichannel acquisition process. A pitch-catch configuration, consisting of a ring actuator and a linear receiver array, is modeled, and dispersion spectra are reconstructed through two-dimensional Fourier transforms—closely mirroring experimental practice. The reconstructed spectra show excellent agreement with analytical solutions, thereby validating the approach. By bridging numerical modeling and experimental acquisition, this FE framework delivers realistic datasets that facilitate advanced signal processing, imaging algorithms, and pipeline inspection strategies.
Downloads
References
Adamou, A. T. I., & Craster, R. V. (2004). Spectral methods for modelling guided waves in elastic media. The Journal of the Acoustical Society of America, 116, 1524–1535. https://doi.org/10.1121/1.1777871
Chree, C. (1889). The equations of an isotropic elastic solid in polar and cylindrical coordinates. Their solution and application. Transactions of the Cambridge Philosophical Society, 14, 251–369.
Cong, M., Wu, X., & Liu, R. (2017). Dispersion analysis of guided waves in the finned tube using the semi-analytical finite element method. Journal of Sound and Vibration, 401, 114–126. https://doi.org/10.1016/j.jsv.2017.04.037
Cooper, R. M., & Naghdi, P. M. (1957). Propagation of nonaxially symmetric waves in elastic cylindrical shells. The Journal of the Acoustical Society of America, 29, 1365–1373. https://doi.org/10.1121/1.1908812
Demma, A., Cawley, P., Lowe, M., & Pavlakovic, B. (2005). The effect of bends on the propagation of guided waves in pipes. Journal of Pressure Vessel Technology, 127(3), 328–335. https://doi.org/10.1115/1.1990211
Gazis, D. C. (1959). Three-dimensional investigation of the propagation of waves in hollow circular cylinders. I. Analytical foundation. The Journal of the Acoustical Society of America, 31(5), 568–573. https://doi.org/10.1121/1.1907753
Ghosh, J. (1923). Longitudinal vibrations of a hollow cylinder. Bulletin of the Calcutta Mathematical Society, 14, 31–40.
Hayashi, T., Kawashima, K., Sun, Z., & Rose, J. L. (2003). Analysis of flexural mode focusing by a semianalytical finite element method. The Journal of the Acoustical Society of America, 113, 1241–1248. https://doi.org/10.1121/1.1543931
Holmes, C., Drinkwater, B. W., & Wilcox, P. D. (2005). Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation. NDT & E International, 38(8), 701–711. https://doi.org/10.1016/j.ndteint.2005.04.002
Holmes, C., Drinkwater, B. W., & Wilcox, P. D. (2008). Advanced post-processing for scanned ultrasonic arrays: Application to defect detection and classification in non-destructive evaluation. Ultrasonics, 48(6–7), 636–642. https://doi.org/10.1016/j.ultras.2008.07.019
Huthwaite, P., Ribichini, R., Cawley, P., & Lowe, M. J. S. (2013). Mode selection for corrosion detection in pipes and vessels via guided wave tomography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(6), 1165–1177. https://doi.org/10.1109/tuffc.2013.2679
Jie, G., Yan, L., Mingfang, Z., Mingkun, L., Hongye, L., Bin, W., & Cunfu, H. (2021). Analysis of longitudinal guided wave propagation in the functionally graded hollow cylinder using state-vector formalism and legendre polynomial hybrid approach. Journal of Nondestructive Evaluation, 40(1). https://doi.org/10.1007/s10921-021-00764-y
Kiefer, D. A. (2024). GEW dispersion script. Zenodo. https://doi.org/10.5281/ZENODO.7010603
Le, D., Phan, H., Nguyen, H., Sacchi, M. D., & Le, L. H. (2025). Guided waves in anisotropic and viscoelastic stratified plates: Application to bone quantitative ultrasound. Computers & Structures, 315, 107820. https://doi.org/10.1016/j.compstruc.2025.107820
Le, D., Tran, H.-N., Quy, H. N., & Phan, H. (2025). Guided wave propagation and scattering in pipes with axisymmetric defects under reciprocity considerations. European Journal of Mechanics - A/Solids, 111. https://doi.org/10.1016/j.euromechsol.2025.105584
Le, D., Van Hung, N., Phan, H., Nguyen, Y., Van Quyen, T., & Le, Q. H. (2023). Analysis of longitudinal guided wave modes in pipe-like structures. Computational Intelligence Methods for Green Technology and Sustainable Development, 647–655. https://doi.org/10.1007/978-3-031-19694-2_57
Lowe, P. S., Sanderson, R., Pedram, S. K., Boulgouris, N. V., & Mudge, P. (2015). Inspection of pipelines using the first longitudinal guided wave mode. Physics Procedia, 70, 338–342. https://doi.org/10.1016/j.phpro.2015.08.079
Maess, M., Herrmann, J., & Gaul, L. (2007). Finite element analysis of guided waves in fluid-filled corrugated pipes. The Journal of the Acoustical Society of America, 121(3), 1313–1323. https://doi.org/10.1121/1.2436711
Maruyama, T., Matsuo, T., & Nakahata, K. (2025). Numerical study on guided-wave reflection and transmission at water pipe joint using hybrid finite element method. Computational Mechanics, 75(1), 285–300. https://doi.org/10.1007/s00466-024-02505-0
Nasedkina, A. A., Alexiev, A., & Malachowski, J. (2016). Numerical simulation of ultrasonic torsional guided wave propagation for pipes with defects. Advanced Materials, 475–488. https://doi.org/10.1007/978-3-319-26324-3_33
Pochhammer, L. (1876). Ueber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder. Journal Für Die Reine Und Angewandte Mathematik, 1876(81), 324–336. https://doi.org/10.1515/crll.1876.81.324
Predoi, M. V. (2014). Guided waves dispersion equations for orthotropic multilayered pipes solved using standard finite elements code. Ultrasonics, 54(7), 1825–1831. https://doi.org/10.1016/j.ultras.2014.01.019
Qu, J., & Jacobs, L. (2003). Cylindrical waveguides and their applications in ultrasonic evaluation. Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, 311–362. https://doi.org/10.1201/9780203501962.ch5
Rose, J. L. (2014). Ultrasonic guided waves in solid media (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781107273610
Sarwar, U., Mokhtar, A. A., Muhammad, M., Wassan, R. K., Soomro, A. A., Wassan, M. A., & Kaka, S. (2024). Enhancing pipeline integrity: A comprehensive review of deep learning-enabled finite element analysis for stress corrosion cracking prediction. Engineering Applications of Computational Fluid Mechanics, 18(1). https://doi.org/10.1080/19942060.2024.2302906
Sorohan, Ş., Constantin, N., Găvan, M., & Anghel, V. (2011). Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes. Ultrasonics, 51(4), 503–515. https://doi.org/10.1016/j.ultras.2010.12.003
Sun, Z., Zhang, L., & Rose, J. L. (2005). Flexural torsional guided wave mechanics and focusing in pipe. Journal of Pressure Vessel Technology, 127, 471–478. https://doi.org/10.1115/1.2065587
Zang, X., Xu, Z.-D., Lu, H., Zhu, C., & Zhang, Z. (2023). Ultrasonic guided wave techniques and applications in pipeline defect detection: A review. International Journal of Pressure Vessels and Piping, 206. https://doi.org/10.1016/j.ijpvp.2023.105033
Zhang, X., Li, Z., Wang, X., & Yu, J. (2021). The fractional Kelvin-Voigt model for circumferential guided waves in a viscoelastic FGM hollow cylinder. Applied Mathematical Modelling, 89, 299–313. https://doi.org/10.1016/j.apm.2020.06.077
Downloads
Published
How to Cite
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers KHCBVL.04/23-24



