Forthcoming

Finite element analysis of guided wave dispersion in pipes with multichannel acquisition

Author affiliations

Authors

  • Ductho Le Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada https://orcid.org/0000-0002-3073-1416
  • Ngoc Quy Hoang Institute of Mechanics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
  • Haidang Phan Faculty of Civil Engineering, VNU University of Engineering and Technology, Hanoi, Vietnam https://orcid.org/0000-0002-7404-268X
  • Hoai Nguyen Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0866-7136/23571

Keywords:

ultrasonic guided waves, dispersion curves, finite element analysis, multichannel acquisition, pipeline inspection, nondestructive evaluation

Abstract

Ultrasonic guided waves have become a key tool in nondestructive evaluation of pipelines, as they can travel long distances with low attenuation while maintaining high sensitivity to defects. Accurate modeling of their dispersion characteristics is essential for inspection design and signal interpretation. This study presents a finite element (FE) framework that advances beyond conventional eigenvalue-based analyses by directly simulating a realistic multichannel acquisition process. A pitch-catch configuration, consisting of a ring actuator and a linear receiver array, is modeled, and dispersion spectra are reconstructed through two-dimensional Fourier transforms—closely mirroring experimental practice. The reconstructed spectra show excellent agreement with analytical solutions, thereby validating the approach. By bridging numerical modeling and experimental acquisition, this FE framework delivers realistic datasets that facilitate advanced signal processing, imaging algorithms, and pipeline inspection strategies.

Downloads

Download data is not yet available.

References

Adamou, A. T. I., & Craster, R. V. (2004). Spectral methods for modelling guided waves in elastic media. The Journal of the Acoustical Society of America, 116, 1524–1535. https://doi.org/10.1121/1.1777871

Chree, C. (1889). The equations of an isotropic elastic solid in polar and cylindrical coordinates. Their solution and application. Transactions of the Cambridge Philosophical Society, 14, 251–369.

Cong, M., Wu, X., & Liu, R. (2017). Dispersion analysis of guided waves in the finned tube using the semi-analytical finite element method. Journal of Sound and Vibration, 401, 114–126. https://doi.org/10.1016/j.jsv.2017.04.037

Cooper, R. M., & Naghdi, P. M. (1957). Propagation of nonaxially symmetric waves in elastic cylindrical shells. The Journal of the Acoustical Society of America, 29, 1365–1373. https://doi.org/10.1121/1.1908812

Demma, A., Cawley, P., Lowe, M., & Pavlakovic, B. (2005). The effect of bends on the propagation of guided waves in pipes. Journal of Pressure Vessel Technology, 127(3), 328–335. https://doi.org/10.1115/1.1990211

Gazis, D. C. (1959). Three-dimensional investigation of the propagation of waves in hollow circular cylinders. I. Analytical foundation. The Journal of the Acoustical Society of America, 31(5), 568–573. https://doi.org/10.1121/1.1907753

Ghosh, J. (1923). Longitudinal vibrations of a hollow cylinder. Bulletin of the Calcutta Mathematical Society, 14, 31–40.

Hayashi, T., Kawashima, K., Sun, Z., & Rose, J. L. (2003). Analysis of flexural mode focusing by a semianalytical finite element method. The Journal of the Acoustical Society of America, 113, 1241–1248. https://doi.org/10.1121/1.1543931

Holmes, C., Drinkwater, B. W., & Wilcox, P. D. (2005). Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation. NDT & E International, 38(8), 701–711. https://doi.org/10.1016/j.ndteint.2005.04.002

Holmes, C., Drinkwater, B. W., & Wilcox, P. D. (2008). Advanced post-processing for scanned ultrasonic arrays: Application to defect detection and classification in non-destructive evaluation. Ultrasonics, 48(6–7), 636–642. https://doi.org/10.1016/j.ultras.2008.07.019

Huthwaite, P., Ribichini, R., Cawley, P., & Lowe, M. J. S. (2013). Mode selection for corrosion detection in pipes and vessels via guided wave tomography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(6), 1165–1177. https://doi.org/10.1109/tuffc.2013.2679

Jie, G., Yan, L., Mingfang, Z., Mingkun, L., Hongye, L., Bin, W., & Cunfu, H. (2021). Analysis of longitudinal guided wave propagation in the functionally graded hollow cylinder using state-vector formalism and legendre polynomial hybrid approach. Journal of Nondestructive Evaluation, 40(1). https://doi.org/10.1007/s10921-021-00764-y

Kiefer, D. A. (2024). GEW dispersion script. Zenodo. https://doi.org/10.5281/ZENODO.7010603

Le, D., Phan, H., Nguyen, H., Sacchi, M. D., & Le, L. H. (2025). Guided waves in anisotropic and viscoelastic stratified plates: Application to bone quantitative ultrasound. Computers & Structures, 315, 107820. https://doi.org/10.1016/j.compstruc.2025.107820

Le, D., Tran, H.-N., Quy, H. N., & Phan, H. (2025). Guided wave propagation and scattering in pipes with axisymmetric defects under reciprocity considerations. European Journal of Mechanics - A/Solids, 111. https://doi.org/10.1016/j.euromechsol.2025.105584

Le, D., Van Hung, N., Phan, H., Nguyen, Y., Van Quyen, T., & Le, Q. H. (2023). Analysis of longitudinal guided wave modes in pipe-like structures. Computational Intelligence Methods for Green Technology and Sustainable Development, 647–655. https://doi.org/10.1007/978-3-031-19694-2_57

Lowe, P. S., Sanderson, R., Pedram, S. K., Boulgouris, N. V., & Mudge, P. (2015). Inspection of pipelines using the first longitudinal guided wave mode. Physics Procedia, 70, 338–342. https://doi.org/10.1016/j.phpro.2015.08.079

Maess, M., Herrmann, J., & Gaul, L. (2007). Finite element analysis of guided waves in fluid-filled corrugated pipes. The Journal of the Acoustical Society of America, 121(3), 1313–1323. https://doi.org/10.1121/1.2436711

Maruyama, T., Matsuo, T., & Nakahata, K. (2025). Numerical study on guided-wave reflection and transmission at water pipe joint using hybrid finite element method. Computational Mechanics, 75(1), 285–300. https://doi.org/10.1007/s00466-024-02505-0

Nasedkina, A. A., Alexiev, A., & Malachowski, J. (2016). Numerical simulation of ultrasonic torsional guided wave propagation for pipes with defects. Advanced Materials, 475–488. https://doi.org/10.1007/978-3-319-26324-3_33

Pochhammer, L. (1876). Ueber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder. Journal Für Die Reine Und Angewandte Mathematik, 1876(81), 324–336. https://doi.org/10.1515/crll.1876.81.324

Predoi, M. V. (2014). Guided waves dispersion equations for orthotropic multilayered pipes solved using standard finite elements code. Ultrasonics, 54(7), 1825–1831. https://doi.org/10.1016/j.ultras.2014.01.019

Qu, J., & Jacobs, L. (2003). Cylindrical waveguides and their applications in ultrasonic evaluation. Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, 311–362. https://doi.org/10.1201/9780203501962.ch5

Rose, J. L. (2014). Ultrasonic guided waves in solid media (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781107273610

Sarwar, U., Mokhtar, A. A., Muhammad, M., Wassan, R. K., Soomro, A. A., Wassan, M. A., & Kaka, S. (2024). Enhancing pipeline integrity: A comprehensive review of deep learning-enabled finite element analysis for stress corrosion cracking prediction. Engineering Applications of Computational Fluid Mechanics, 18(1). https://doi.org/10.1080/19942060.2024.2302906

Sorohan, Ş., Constantin, N., Găvan, M., & Anghel, V. (2011). Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes. Ultrasonics, 51(4), 503–515. https://doi.org/10.1016/j.ultras.2010.12.003

Sun, Z., Zhang, L., & Rose, J. L. (2005). Flexural torsional guided wave mechanics and focusing in pipe. Journal of Pressure Vessel Technology, 127, 471–478. https://doi.org/10.1115/1.2065587

Zang, X., Xu, Z.-D., Lu, H., Zhu, C., & Zhang, Z. (2023). Ultrasonic guided wave techniques and applications in pipeline defect detection: A review. International Journal of Pressure Vessels and Piping, 206. https://doi.org/10.1016/j.ijpvp.2023.105033

Zhang, X., Li, Z., Wang, X., & Yu, J. (2021). The fractional Kelvin-Voigt model for circumferential guided waves in a viscoelastic FGM hollow cylinder. Applied Mathematical Modelling, 89, 299–313. https://doi.org/10.1016/j.apm.2020.06.077

Downloads

Published

15-12-2025

How to Cite

Le, D., Hoang, N. Q., Phan, H., & Nguyen, H. (2025). Finite element analysis of guided wave dispersion in pipes with multichannel acquisition. Vietnam Journal of Mechanics. https://doi.org/10.15625/0866-7136/23571

Issue

Section

Research Article

Categories

Funding data

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.