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Abstract. In this study, a dynamic body-fitted trimmed mesh approach is presented to
address reaction-diffusion equation-based topology optimization problems, with the ob-
jective of minimizing structural compliance. The evolution of the zero-isoline of a level set
function is governed by the solution of a reaction-diffusion equation, which is controlled
by the topological sensitivity field and implemented on a regular background quadrilat-
eral mesh. During each optimization iteration, a dynamic body-fitted trimmed mesh is
constructed to accurately delineate the structural domain. This procedure employs the
marching square algorithm, which segments the fixed background quadrilateral mesh
along the zero-isoline of the level set function. To ensure precision in the optimization,
the reaction-diffusion equation is solved utilizing a numerical algorithm grounded in the
exact volume constraint method, which meticulously calculates the Lagrange multiplier
to uphold the constraint condition. The proposed approach exhibits exceptional efficacy
in solving level set-based topology optimization challenges, particularly in achieving ac-
curate boundary representations while strictly adhering to volume constraint conditions
within a predefined error tolerance. These are evident through the numerical results of
two benchmark problems including 2D cantilever beam and L-bracket domain.

Keywords: body-fitted trimmed mesh, level set function, reaction-diffusion equation, march-
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1. INTRODUCTION

In the field of topology optimization (TO), the level set (LS) method is widely rec-
ognized for its versatility in engineering design. Its innovative use of scalar functions
in higher-dimensional spaces to implicitly define material boundaries has made it a key
tool for creating lightweight, high-performance structures that meet specific criteria [1].
Typically, the evolution of the LS function is governed by solving the Hamilton-Jacobi
equation, in which shape sensitivity is considered as a normal velocity field along the
free boundary during the optimization process. Solving this equation requires imple-
menting a re-initialization procedure for the LS function after certain iterations to pre-
serve its signed distance function (SDF) property. This procedure is both computation-
ally intensive and challenging. Additionally, this approach has one notable weakness in
that it is impossible to create new holes in the material region, which requires laying a
sufficient number of holes in the initial design configuration to avoid the local conver-
gence phenomenon [2]. To address these issues, a few variational formulations replacing
the Hamilton-Jacobi equation have been developed in the literature such as the radial
basis [2,3] and reaction-diffusion equations [4,5]. Among these two variational formu-
lations, the reaction-diffusion equation (RDE) presents a more straightforward mathe-
matical model and has been widely used in LS-based TO. This methodology not only
enables topological alterations that generate new boundaries during the optimization
process without necessitating the re-initialization of the LS function, but it also offers a
mechanism for qualitative control over the geometric complexity of the optimized con-
figurations. This control is achieved through the careful selection of appropriate values
for the regularization parameter within the diffusion component.

Most conventional LS-based topology optimization (TO) methods convert the LS
function into a density distribution, commonly referred to as the “Ersatz material” [6],
and utilize a fixed Eulerian mesh to solve the state equations. However, this approach
can lead to the zig-zag boundary phenomenon in the finite element (FE) analysis, similar
to issues observed in density-based TO methods [7,8]. This phenomenon can significantly
influence the final optimal shapes. To address these challenges, various research efforts
have introduced conforming discretization methods, such as body-fitted mesh evolution
techniques [1], boundary element methods (BEM) [9], and anisotropic mesh adaptation
approaches [10]. These methods offer the advantage of providing a clear and explicit rep-
resentation of the structural (material) domain in LS-based TO. However, they demand
the implementation of efficient meshing techniques. Despite advancements, the preva-
lent use of triangular/tetrahedral meshes in prior studies has been associated with issues
such as low computational efficiency and increased costs in efforts to improve mesh qual-

ity.
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Recently, Nguyen et al. [11,12] introduced a new dynamic body-fitted mesh evolu-
tion method utilizing trimmed hexahedral meshes for the optimization of 3D problems
based on the LS framework. This approach was subsequently extended to optimize plate
and shell structures by employing trimmed quadrilateral (Q4) elements [13]. Trimmed
Q4 elements are efficiently generated using the marching square (MS) algorithm [14],
which splits regular background Q4 elements into polygonal ones along the zero-isoline
of an LS function, as illustrated in Fig. 1. These elements are recognized for their con-
siderable versatility, accommodating an arbitrary number of vertices and edges while
maintaining high accuracy. Additionally, removing the void domain from the FE analy-
sis during the optimization process can substantially decrease computational expenses.

In numerous previous studies, the augmented Lagrangian (AL) method and its vari-
ations have been widely employed to address LS-based TO problems. However, apply-
ing this method for the volume-based TO problems has a noticeable drawback in not
guaranteeing the accuracy of the volume constraint in the final optimization configura-
tion [15]. To address this limitation, several studies have been proposed in the literature.
For instance, Cui et al. (2022) [3] presented a fuzzy PID control algorithm to compute
the value of the Lagrange multiplier as well as address the volume constraint. While this
method demonstrates excellent numerical stability and high accuracy in maintaining the
volume constraint for optimal designs, its application to TO problems is hindered by the
complexity of mathematical modeling and the challenge of selecting appropriate initial
PID control parameters. In another approach, Cui et al. (2023) [15] introduced an exact
volume constraint method (EVCM) for TO via the RDE based on accurately computing
the value of the Lagrange multiplier. Their approach separates the LS function and the
RDEs into two independent components associated with the Lagrange multiplier. Dur-
ing each optimization iteration, two distinct LS functions are computed, followed by the
application of an interior Newton-Raphson algorithm to accurately determine the La-
grange multiplier. This ensures that the volume constraint is tightly satisfied at each
step. Numerical examples demonstrated that this method significantly enhances numer-
ical stability and improves convergence efficiency in TO problems.

Building on these insights, this paper presents a novel integration of RDE with the
dynamic body-fitted trimmed Q4 mesh technique, aimed at establishing an efficient and
robust framework for solving structural optimization problems. Notably, the void do-
main will be removed from the FE analysis during the optimization process to reduce
computational expenses and mitigate the occurrence of singularity phenomena.
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2. DYNAMIC BODY-FITTED TRIMMED MESH PROCEDURE FOR SOLVING
LS-BASED TOPOLOGY OPTIMIZATION

2.1. Dynamic body-fitted trimmed Q4 mesh technique

~ ¢(x) >0

Op(x)>0 Op(x)<0
(b)

Op

(©) (d)

Fig. 1. Dynamic body-fitted mesh evolution method: (a) surface representation, (b) three non-
overlapping subdomains and element-trimmed method for DY subdomain, (c) body-fitted
trimmed Q4 mesh, and (d) body-fitted trimmed Q4 mesh with only material domain

We define D C R? as a fixed design domain accommodating an open bounded mate-
rial domain () C D which involves all admissible shapes of TO problems. The boundary
of Nisd): =T =TpUTI'yUTgsuchthatI'p NT'y = &, where I'p and I'y are the Dirich-
let and Neumann boundaries, respectively, and I'y is the design boundary whose shape
changes throughout the optimization process. As introduced by Yamada et al. (2010) [4],
Fig. 1(a) reveals a modified LS function ¢ (x): D — R, derived from the phase field
model, is utilized to delineate the material domain Q\9(), its boundary 9}, and the void



Integrating reaction-diffusion equations with a dynamic body-fitted trimmed mesh technique ... 309

domain D\ (), as described by the following definition

1>¢(x)>0, VxeO\oQ
$(x)=0, Vx € 0 (1)
0>¢(x)>—-1, VxeD\Q

where in regions sufficiently far from the material boundaries, the level set function con-

sistently takes on values of 1 or —1. Assume that the domain D is discretized into a
n
]

uniform regular Q4 mesh D), such that D, = U 0G4 and QiQ4 N Q]Q4 = @ fori # j,

e=1
wherein 7, is the number of elements. Based on the information regarding the zero-

isoline, three distinct and non-overlapping subdomains DY, D;", and D, are partitioned
from the domain Dy, as illustrated in Fig. 1(b), such that

Dh‘:{ 64€Dh|0>v¢(x)2—1},
Dy =D, UD, UD) with D;:{Qa4eDh|1EVq>(x)>O}, 2)
D) = {04, € Dy [0f, T £ 0},

As shown in Fig. 1(b), the D) subdomain is distinctly organized into polygonal
element domains, denoted as P, = {Q]‘; € DY |1 > Ve (x) > 0} and P, = {Q; € DY|0
> V¢ (x) > —1} containing the polygonal elements constructed based on the MS algo-
rithm [14]. Therein, a point x; (i.e. ¢ (x;) = 0) is the intersection between an LS function
and an edge of a Q4 element defined by linear interpolation as follows

¢ (x1)

P ) —p ) 1T o
where x; and x, denote the positions of the endpoints on an edge of a Q4 element, en-
suring that their LS values satisfy the condition ¢ (x1) - ¢ (x2) < 0. Leveraging the reflec-
tive and rotational symmetry in the analyzed configurations, the number of intersection
topologies in this algorithm can be reduced from 16 to 4, as depicted in Fig. 2. After

HyAp=e®

O ¢(x) >0 0 ¢(x) <0

X = X1 —

Fig. 2. Four MS configurations for a regular Q4 element trimmed by a zero-isoline
of an LS function
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partitioning D}, the two trimmed subdomains merge with D, and D;, to form the mate-
rial and void domains, O, and Dj\ (), respectively. This results in ), = D,j U 73; and
Dy\Qy, = D, UP, , asillustrated in Fig. 1(c).

Next, a handling procedure to enhance the quality of trimmed Q4 elements at ma-
terial boundaries is implemented by merging the adjacent nodes of polygonal elements
with small edges within a specified tolerance into one node, as illustrated in Fig. 3. Lastly,
the well-known Wachspress coordinates, recognized for their simplicity in generating in-
terpolation functions for the FE framework, is applied in this study. Comprehensive
details regarding these polygonal shape functions can be found in [16]. Additionally, in
this study, the void domain will be removed from the FE analysis during the optimiza-
tion process to reduce computational expenses and mitigate the occurrence of singularity
phenomena, as shown in Fig. 1(d).

h

\

Fig. 3. Progress to improve the quality of trimmed Q4 at the material boundary

2.2. Level set-based topology optimization using reaction-diffusion-based approach

Using a dynamic body-fitted trimmed mesh approach for the LS-based TO, a general
minimum compliance problem formulated under a volume constraint G is expressed as
follows
(Find ¢ = ¢ (X), VX €D,

: = [ &' (u)cCe(u
1$f‘1’(u)— A (u) Ce (u) dQY, a (1, /gT(u)Qie(v)dQ,

o) =
a(u,v) =1(v), with a
G (@) = [ X (#)dD—Vim <0, () = [ fTodr,

uelU,vev,

(4)

where u (x) and v (x) are the displacement and virtual displacement vectors of the mate-
rial domain, respectively; € is the constant material matrix; f (x) is the load vector; ¥ (u)
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1
is the general objective function; & (u) = 3 (Vu + (Vu)T> is the strain vector; Vj, is the

volume limit; U € H' () and V € H' (Q) are the FE approximation spaces; and x (¢)
is the characteristic function which will be discussed in Section 2.4. Note that X and x de-
note the positions in the regular Q4 mesh of the fixed design domain and the body-fitted
trimmed mesh of the material domain, respectively.

By using the Lagrange multiplier method [5], the optimization problem (4) is re-
placed by the unconstrained one,

L(uo,¢,A) =Y (u)+a(uv)—1(v)+AG(¢), 5)

where £ and A are the augmented Lagrangian functional and the Lagrange multiplier,
respectively. During the optimization process, an optimal configuration is determined if
it satisfies the following KKT (Karush-Kuhn-Tucker) conditions [5]:

g=0, A\G=0, A>0, GO, (6)

where £’ denotes the derivative of £. Initially, the formulation of £’ in the LS-based TO
problem is predominantly conducted using the classical method, which relies on shape
sensitivity analysis [6]. However, this approach has a critical limitation: it cannot gen-
erate new holes within the material region. As a result, the initial design configuration
must include a sufficiently large number of holes to mitigate the risk of local convergence,
which can adversely affect the solution quality [2]. To overcome this limitation, Yamada
et al. (2010) [4] introduced the use of topological sensitivity to define £'. Subsequently,
Otomori et al. (2015) [5] further developed it by considering the effect of the boundary
condition of the holes when new holes were created in the material domain during the
optimization process. Due to the self-adjoint nature of the minimum compliance prob-
lem, the topological derivative of the Lagrangian £ on the material domain is expressed
as follows

diL (x)|g = A — &l Agg, (7)
——r
J(x)
where J (x) is the strain energy density and the subscript “0” denotes the values ob-
tained without creating holes. In Eq. (7), A is a material matrix given in [5].

Based on the extended topological derivative (discussed in Section 2.3) of the La-
grangian £ on the fixed design domain [4, 5], the LS function ¢ is updated during the
optimization process by solving the RDE with a fictitious time ¢ as follows

W AL dS(X)|p~ V), inD
(E0): q 99 _ 0 on dD\0Dy ®
on ’

=1, on 0Dy
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where £ (¢) is a coefficient of proportionality set to be 1; TV?¢ is the regularization dif-

fusion term which ensures the smoothness of the LS function; 7 is a regularization pa-

[,,dD
D

fD |J (X)|dD
ization [5]; and 0D = 0Dy U 0Dp is the boundary of D, in which 0Dy and dDp are

respectively the Neumann and Dirichlet boundary conditions of the design domain D.

rameter; { = is an extended parameter designed for sensitivity normal-

2.3. Extension and smoothing of the topological sensitivity field

In the LS-based TO framework using a body-fitted trimmed mesh approach, the
topological derivative of the Lagrangian in Eq. (7) is only meaningful within the material
domain (),. However, to solve the RDE, the topological derivative governing the evo-
lution of the LS function must be defined across the entire fixed design domain Dj, [11].
To achieve this, our approach extends the topological derivative field from the material
domain, d;£ (x)|g, to the entire fixed design domain, d;£ (X)|p, as follows

A—J(X), VX e,

9
A, VX € D\, ®)

AL (X)|p = {
where J (X) is the strain energy density extended to the fixed design domain Dj,. Note
that this strain energy density is not continuous across the zero-isoline I'y of the LS func-
tion (intermediate domain) [11]. To mitigate this discontinuity, several techniques have
been introduced in previous research such as the fast extension method [17], fast local
level set method [18], and simple radial smoothing filter [11]. Among these methods, the
simple radial smoothing filter is one of the simple techniques that achieves the smooth-
ness of the strain energy density field. Hence, in this paper, a strain energy density in
the intermediate domain D} is smoothed using the simple radial smoothing filter [11],
defined as

Yx,en, Pr ([1Xr — X[5) - T (X) 0
X L , VX eD
J(X) = { Yx,en, Pr (1Xr = X[|,) " (10)
J (X), VX € D;\D)
where
@, (| Xy = X[|,) = max (0, rmin — [| X7 — X[5), (11)

is a weight function, 7, denotes the set of grid points X for which the distance || X, — X||,
is smaller than the filter radius rmin. Finally, the topological derivative field across the
entire design domain can be redefined as

A=J(X), VX €D
die(X)lp =142 VX €D, (12)
A—=J(X), VXeD)

where subdomains Dg, D,j ,and D, are defined in Section 2.1.
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2.4. Exact volume constraint method

To determine the value of the Lagrange multiplier A in Eq. (12), Otomori et al. (2015)
[5] introduced a modified version of the augmented Lagrangian (AL) method as follows

Jp I (X)dD a8 +as)]

A= | =—F—"~— Clim , 13
( fpdp P o

with the volume constraint G in Eq. (4) is replaced with the following form
G:/ Xo (¢)dD — <th+(Vo—th)max <o,1— : )) (14)

D Nyol
Glim

where V) is the volume of the initial design configuration, and a; = 4 and a; = —0.02

denote the adjusting parameters [5]. It is noteworthy that the third term on the right-hand
side of Eq. (14) serves as an additional component aimed at relaxing the upper limit of
the volume constraint to facilitate stable convergence such that when the current iteration
number is higher than the relaxed iteration number 1., the relaxed volume constraint
in Eq. (14) returns to the primitive one as in Eq. (4).

Solving Eq. (8) using the above modified AL method and its variations has a notice-
able drawback: it does not guarantee the accuracy of the volume constraint in the final
optimization configuration. To overcome this limitation, this study adopts the EVCM
proposed in [15]. In this approach, the exact value of the Lagrange multiplier A is ob-
tained by decomposing the original RDE (8) into two initial boundary value problems as
follows

o
% _ {di£+tV23$, inD

:
(&1): 9 3, = 0, on 0D\dDy (15)
$=1, on 0Dy
$(H)=¢(t),
and )
‘;‘f =1+1V?%), inD
o
(&) : Ei 0, on dD\dDy (16)
$=0, on 0Dy
¢(t) =0,

where the variable ¢ in the problem (&) is the LS field within the interval from ¢ to t +
At, wherein At is the time increment. Meanwhile, the variable ¢ in the problem (&;) is a



314 Ba-Dinh Nguyen-Tran, Son H. Nguyen, Duc-Huynh Phan, Quoc Hoa Pham, Trung Nguyen-Thoi

time-independent LS field and incurs only a one-time computational cost in the overall
optimization process [15].

As presented in [15], the volume constraint in Eq. (4) can be rewritten as an implicit
equation with respect to the Lagrange multiplier A as follows

1) = [ xe (@A) dD Vi, 17)

In handling the adjusted volume constraint in Eq. (17), the Newton-Raphson algo-
rithm is applied to determine the value of A. Detailed information about this algorithm
can be referenced in [15]. Notably, to compute the characteristic function x4 (¢ (1)), a
smoothed Heaviside function is used in the following form

Hs (¢ (1)) = max (tanh (k¢ (1)), 0), (18)
where k = (v/n + 1) at the nth time step, as proposed in [15].

2.5. Finite element approximation

Applying the implicit Backward Euler method for time discretization and the standard
Galerkin method for spatial discretization [19], the Egs. (15) and (16) are approximated
as follows

HU+AD D (AR D p Pt) 5dD ,
/D o +T/DV4) Vo —/D che+ P ) gdD,  (19)

(P t+At . .
/ . ¢dD + 1 /D VUM .V pdD = /D ¢dD, (20)

where ¢ and ¢ are any test functions. In this study, the criteria for concluding the opti-
mization process are delineated by

H4><f+Af> - q><f>HLm <0.02. 1)
In the FEM framework, the discretized systems of RDEs (19) and (20) can be written
as follows
1 o)
(D — @
<AtM + D> (gL + 5 ) (22)
<1M + D> oA — N, (23)
At
Ne Ne
where ® = \/ P°, D = ¢°, and & = \/ ¢° are the assembly nodal value vectors
e=1 e=1 e=1

Ne Ne
of LS functions; N = \/ N°and L = \/ L° are the assembly nodal value vectors of the
e=1 e=1
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ne
shape function and topological sensitivity, respectively; M = \/ M° and D = D (1) =
e=1

Ne
\/ D¢ (7) denote the assembly mass and diffusion matrices, respectively, determined by
e=1

Me = / (N©)T N¢dD, (24)

D=1 / (VN)T VN¢dD, (25)
'Dﬁ

where 1, is the number of Q4 elements and D¢ is a Q4 element in the uniform regular Q4
mesh of the fixed design domain.

3. NUMERICAL EXAMPLES

This section presents an analysis of two benchmark problems to assess the effective-
ness of the proposed method. An isotropic elastic material, characterized by Young’s
modulus E of 1 and Poisson’s ratio v of 0.3, is employed across all benchmark cases.
According to the literature [5], the regularization parameter T = 2 x 10~* is deemed ap-
propriate for achieving a balance between the geometric complexity of the optimized
configurations and the value of the objective function, and is thereby adopted in the
present study. Based on our experience in numerical analysis and prior study [11], the
filter radius rmin in Eq. (11) is selected to be 2.5/, which is a suitable value for smoothing
the topological sensitivity field without changing its value too much. Additionally, dur-
ing the updating of the LS functions, the value of the time increment At is taken equal to
0.1 to secure the numerical stability and convergence for the problems.

3.1. A 2D cantilever beam problem

The first benchmark problem under consideration involves a 2D cantilever beam
tixed at one end and subjected to a uniform load applied over a small region at the center
of the free end, as shown in Fig. 4(a). The value of the volume limit Vj;,, is set at 50%
of the whole design domain. The initial design configuration for most of the analyses of
this problem is depicted in Fig. 8(a).

To confirm the effectiveness of the smoothing technique for topological sensitivity to
the numerical convergence of the problem, a comparison between results with and with-
out applying this technique in the analyzed results is conducted in Fig. 5. Note that a dy-
namic body-fitted trimmed Q4 mesh generated by splitting a regular background mesh
80 x 64 and the exact volume method are used in this comparison. As seen in Fig. 5(a), it
is observed that there is a significant fluctuation in the amplitude of the compliance over
a range of 20 iterations, beginning from iteration 25 when the smoothing method is not
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Fig. 4. Two benchmark problems: (a) a 2D cantilever beam, and (b) an L-bracket domain

employed. In contrast, this phenomenon does not occur when the smoothing technique
is utilized. Moreover, the convergence time when adopting this technique also decreases
considerably, less than half compared to scenarios without it. Additionally, this method
can eliminate the minor ripple phenomenon at the interface of the structure, which arises
due to the discontinuity of the LS function, as illustrated in Fig. 5(b). These findings ver-
ify the superior efficacy of the smoothing method in solving LS-based TO problems, as
expected. Therefore, this method will be applied to all subsequent analyses.

550
N
o [ \\‘r
gL
(]
2450 4
E —With smoothing
g- - - .Without smoothing|
8 400
~
350 JH
E (1]
A
A
300
0 50 100 150 200

Iteration

(a) (b)

Fig. 5. A comparison of the obtained results with and without applying the smoothing method:
(a) compliance history, (b) optimal configurations using the smoothing method (top) and without
it (bottom)

Utilizing the same trimmed mesh as specified above, the historical curves of the
compliance and volume ratio (V/Vjyy) for the 2D cantilever beam problem, which are
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obtained by using two numerical algorithms in Section 2, are seen in Fig. 6. Overall,
a short initial transient, observed as a brief decrease in the volume ratio curve at early
iterations, occurs when using the modified AL method. This behavior results from the
gradual adjustment of the Lagrange multiplier A and the concurrent evolution of the
smoothed Heaviside function. As both fields converge, the volume ratio rapidly stabi-
lizes at the target value. This transient is purely numerical and does not affect the final
topology. Additionally, the volume ratio of the modified AL method at the optimal iter-
ation exhibits a slight deviation (nearly 2%) compared to the value of the volume limit
Viim- Although this deviation is relatively minor and generally acceptable, it is important
to note that there is no assurance that such a small deviation will remain in other circum-
stances. In contrast, the volume ratio determined by the exact volume method shows
almost no deviation due to the volume constraint at each iterative step being tightly sat-
isfied within the specified error tolerance. Besides, the compliance curve of the exact
volume method at the time of convergence is sharply lower than that of the modified AL
method. Furthermore, the exact volume method requires less time than the modified AL
method to achieve convergence. Through these comparisons, the exact volume method
is demonstrated to be capable of enhancing numerical stability and accuracy, as well as
significantly improving convergence efficiency in TO problems.

5501 ————— 1.1
1F-
500 — '
[ £ '
o 09
2450 S osl
= , — With EVCM g \ —With EVCM
) ; - - Without EVCM SR - - Without EVCM||
3400 [ o U |
o £ S
t '8 0.6 \\\ 1
350 - > . ]
0.5 . :
0l — ———————— 0.4
0 50 100 0 50 100
[teration Iteration
(@) (b)

Fig. 6. The historical curves for the 2D cantilever beam problem using modified AL
and EVCM methods: (a) compliance and (b) volume ratio

On the other hand, to investigate the influence of using the dynamic body-fitted
trimmed Q4 mesh to solve LS-based TO minimum compliance problems, a comparative
analysis between this mesh and the regular fixed mesh in the numerical results is featured
in detail in Fig. 7. Notably, this analysis uses an 80 x 64 mesh for the case of the regular
fixed mesh (meshing method 1), while the dynamic body-fitted trimmed Q4 (meshing
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method 2) is obtained by trimming a regular background mesh having the same mesh
size. Both approaches utilize the numerical algorithm of the exact volume method to
find the problem solutions. As plotted in Fig. 7(a), it is seen that the compliance curve
using meshing method 1 fluctuates considerably during the first 20 iterations, while that
using meshing method 2 shows an upward trend until reaching a peak and then falling
gradually to convergence. Moreover, the compliance value at the optimal iteration em-
ploying meshing method 1 is remarkably higher than that recorded for meshing method
2, while the convergence time of both is not too different. Fig. 7(b) reveals a zig-zag
boundary phenomenon of the mechanical structure in the optimal configuration as a re-
sult of meshing method 1. In contrast, meshing method 2 yields a crisp and smooth
representation of the material boundary. From the results obtained, the dynamic body-
fitted mesh evolution method using trimmed Q4 elements proves to be an effective tool
for obtaining a clear and explicit representation of the mechanical model while ensuring
high accuracy and convergence.

1000

900

[
Aunn
0 | o
é E: ) Ll
= 700 N —Trimmed Q4 mesh
=Y A - - .Fixed Q4 mesh
£ 600" .
O ' ...
500,
400
300
0 20 40 60 80

Iteration

(@) (b)

Fig. 7. A comparison of the obtained results for the 2D cantilever beam problem using two mesh-
ing methods: (a) compliance history, (b) optimal configurations by using the dynamic body-fitted
trimmed Q4 mesh (top) and regular fixed mesh (bottom)

Finally, in order to examine the influence of the initial design configuration on the
evolution of the topologies within our proposed method, two distinct cases with dif-
ferent initial design configurations and their corresponding optimal configurations are
presented in Fig. 8. It is noteworthy that all the input parameters and the information
of dynamic body-fitted trimmed Q4 mesh are the same as in the previous analyses. As
shown in Fig. 8, although there is a slight difference in the final shape between the two
cases, the optimal configurations in all cases are crisp and smooth. This indicates that the
initial design configuration has a minor impact on the resultant optimal configurations.
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Furthermore, this figure also exhibits the smooth transition of the topologies throughout
the optimization process without any difficulties.

Initial shape Tteration: 10 Iteration: 20 Optirﬁal shape

(a) Case 1

Initial shape ) Iter?itlon. 10 Iteration: 20 Optiﬁlal shape

(b) Case 2

Fig. 8. Evolution of the topologies for the 2D cantilever beam problem
with different initial design configurations

3.2. An L-bracket domain problem

The second benchmark problem being examined involves an L-bracket domain, fixed
at the top edge and subjected to a uniformly distributed load applied over a minor edge
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Fig. 9. The historical curves for the L-bracket domain problem using modified AL
and EVCM methods: (a) compliance and (b) volume ratio
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at the top right corner of the cantilever part, as depicted in Fig. 4(b). The value of the vol-
ume limit Vyy, is set at 50% of the whole design domain, and the smoothing method for
the topological sensitivity is applied for all the cases. In most analyses of this problem, the
initial design configuration is established without any holes, as illustrated in Fig. 12(a).
Notably, in this example, all the analyses use a uniform 100 x 40 regular background
mesh for both meshing methods.

Fig. 9 illustrates the historical trends of

compliance and volume ratio for the L-bracket 110007
domain problem, analyzed using two numer- 10000 5
ical algorithms. It can be seen that the com- |

. . 9000 4
pliance curve derived from the exact vol- g n
ume method exhibits sharply less fluctuation § 8000 — Trimmed Q4 mesh
than the modified AL method. Furthermore, g 2000 - - Fixed Q4 mesh
the compliance value at the optimal time re- S e
mains markedly lower with the exact volume 6000
method. Besides, the volume ratio for the 5000:
modified AL method is significantly smaller 4000' ]
than the allowable volume ratio at the opti- 0 50 100

mal time. In contrast, the value for the exact Iteration

volume method always remains accurate and Fig. 10. Compliance history for the L-

stable during the optimization process. More- 1 3cket domain problem using two mesh-
over, less time is spent on convergence in the ing methods

exact volume method than in the modified AL
method.

Figs. 10 and 11 compare the obtained results for the L-bracket domain problem using
two distinct meshing methods, as mentioned in Section 4.1. It is evident that the dynamic
body-fitted mesh evolution method, using a trimmed Q4 mesh, yields a lower objective
function value while taking fewer iterations compared to the conventional fixed mesh
approach. Furthermore, it also features a clear and smooth structure boundary without
the zig-zag boundary phenomenon arising.

Lastly, the evolution of the topologies of the L-bracket domain at four iterations of the
optimization process using two different initial design configurations is viewed in Fig. 12.
It is clear that all the topologies have crisp and smooth features, and their evolution can
be smoothly changed without any troubles throughout the optimization process by using
the proposed approach.
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o

(a) (b)

Fig. 11. Optimal configurations : (a) using the dynamic body-fitted trimmed Q4 mesh
and (b) using regular fixed mesh
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. — N ) g
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Fig. 12. Evolution of the topologies for the L-bracket domain problem with different initial design
configurations

4. CONCLUDING REMARKS

This study integrates RDEs with a dynamic body-fitted trimmed Q4 mesh technique
to solve LS-based topology optimization problems for compliance minimization. The
evolution of the zero-isoline of the LS function is driven by a topological sensitivity field
on a regular Q4 mesh and enhanced by a radial smoothing filter to suppress ripple effects
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and improve computational efficiency. The dynamic trimmed mesh is generated using
the marching square algorithm, while the EVCM accurately computes the Lagrange mul-
tiplier for solving the RDE. The results confirm that the smoothing filter enhances nu-
merical stability, the EVCM ensures precise volume control, and the trimmed mesh rep-
resentation yields smooth and well-defined boundaries. Although the method exhibits
high accuracy and robustness, its geometric resolution still depends on the background
mesh density, and the current implementation is limited to 2D. Extending the approach
to 3D using the marching cube algorithm and trimmed hexahedral meshes is conceptu-
ally straightforward but presents additional challenges, such as the complex generation
and integration of trimmed elements and the higher computational cost. Despite these
limitations, the framework remains promising for large-scale, multi-material, and multi-
physics topology optimization problems.
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