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Abstract. In the machining industry, the demands for precision and high speed of ma-
chine tools in CNC machines are increasingly high. The crucial component of these kinds
of machines is a feed drive (FD) system, which comprises a servo motor coupled with a
ball screw. Therefore, in this paper, a cascade scheme consisting of an inner and outer loop,
which are also called the secondary and primary loops respectively, is suggested to con-
trol the feed drive system to improve the system’s performance regarding tracking control
and disturbance rejection. A filtered proportional integral (PI) controller is suggested for
the secondary loop, and its tuning guidelines are established through the internal model
control (IMC) approach. Additionally, a fractional-order proportional derivative (FOPD)
controller and its design methodology in the frequency domain are introduced for the
primary loop. The robust stability of the controlled system is assured by the maximum
sensitivity function (Ms value). The investigation carried out through simulation focused
on the feed drive system, and the findings indicated that the suggested control strategies
fulfill the stringent criteria of a servo system.

Keywords: cascade control, CNC tool machines, feed drive systems, fractional-order con-
trollers, internal model control.

1. INTRODUCTION

In order to control the position of the components of a machine tool, including the
cutting tool and workpiece, a feed drive system is normally adopted. Therefore, the
positioning precision and moving speed determine the quality and productivity of the
system.

https://doi.org/10.15625/0866-7136/22269
https://orcid.org/0009-0002-0021-0537
https://orcid.org/0000-0002-6912-1260
mailto: vutnl@hcmute.edu.vn


Cascade control for feed drive systems 209

The feed drive comprises a sliding table on the guide and is translated linearly by
a ball screw. The ball screw is normally connected directly to the servo motor or via a
gearbox for high-powered machines. The speed and positioning precision of the machine
tool are generally affected by the control algorithms, mechanical drives and guides, and
sensors used in each feed drive [1]. The design of control algorithms for the feed drive
system aims to enhance precision and reduce disturbances during machining, such as
vibrations caused by the system itself or by changes in depth of cut and feed rate. Because
the DC motor has excellent specifications in terms of speed and position control, it is
usually used for feed drive systems in CNC machine tools [2].

In CNC machine tools, the feed drive controller typically has two control loops: a
proportional (P) or proportional derivative (PD) controller is used for position control,
and a proportional integral (PI) controller is utilized for velocity control [3, 4]. Conse-
quently, the cascade structure with two closed loops—the outer loop, or primary con-
troller, for position control and the inner loop, or secondary controller, for velocity control—
is used for the feed drive system in this article. Actually, the controllers are still based on
proportional integral derivative (PID) control with some modifications to achieve better
performance of the controlled system.

The PID controller has been widely used in process industries, and due to its sim-
ple structure, it is easy to implement and shows high control performance, including
good set-point tracking as well as good disturbance rejection. However, tuning the PID
controller parameters becomes difficult if the system is unstable, has slow feedback, ex-
periences vibrations, or fails to achieve the desired accuracy. Numerous experiments
have been documented to increase the cascade system’s control accuracy. Garrido and
Dı́az [5] proposed a method for adjusting the cascade system that uses the direct synthe-
sis technique as the basis for the tuning rules, with the primary acting as the P controller
and the secondary as the PI controller. Other researchers have proposed various meth-
ods for tuning both control loops of cascade systems or modifying the control structure
by combining with a filter or the Smith predictor to enhance the system responses [6–8].
Unfortunately, most of the methods mentioned are not suitable for FD systems with high
position control requirements.

In order to improve system performance to satisfy the high demands for a servo sys-
tem, some researchers have suggested adopting nonlinear control techniques. In [9], a
robust adaptive fuzzy compensation controller is proposed for a servo motor. A conven-
tional P/PI controller is used for a cascade control scheme. However, the authors also
used an adaptive fuzzy logic system to estimate friction. In [10], the authors use a lin-
ear model predictive control (MPC) and an adaptive MPC (AMPC) with an additional
integral action to deal with model uncertainties. Those methods have been proven to
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achieve better performance compared with other classical controllers. However, they are
quite sophisticated to implement in real-time applications.

Recently, the generalization of the PID controller based on fractional calculus, which
is called the fractional-order PID (FOPID) [11], has been introduced, in which two ex-
tra parameters in terms of the fractional orders of integral and derivative are included.
Therefore, the main advantage of the FOPID controller is its flexibility in tuning control
parameters, as well as greater robustness compared to the integer-order one. Many re-
searchers have proposed using this controller in process control. However, it is com-
monly applied in single-input, single-output systems or multivariable processes, and
rarely used in complex structures such as cascade systems. Yumuk et al. [6] suggested
a parallel cascade approach using a PD controller for the primary loop and a FOPI con-
troller for the secondary loop. Internal model control is utilized to derive the tuning
rules. However, without a specific systematic methodology, the robust stability is only
supported by simulation studies.

In this paper, a PI controller, whose tuning rules are based on the IMC structure, is
adopted for the inner loop. For the outer loop, a fractional-order PD (FOPD) controller is
proposed, and its design method is derived from the frequency domain [7,12]. The struc-
ture of this paper is as follows. In Section 2, a brief introduction to a mechanism system,
including a mechanical system, a DC servo motor model, and a sliding table, is provided.
In addition, the proposed PID controller for the inner loop and the fractional-order PD
controller in the frequency domain are also mentioned. Section 3 refers to the design
method for each control loop. Some criteria for evaluating the system’s performance are
addressed in Section 4. The simulation study and conclusion will be covered in Section 5
and Section 6, respectively.

2. SYSTEM DESCRIPTION

2.1. The mechanism structure
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2.2. Mathematical modeling 

2.2.1. The servo motor modeling 
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Figure 2. Block diagram of a DC servo motor 

Therefore, the mathematical model of the servo motor is derived as follows: 
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where,  
Ra: armature resistance (Ohm); La: armature inductance (H)  
Km: torque constant (Nm/A); Ke: back emf constant (V/rad/s) 
Tm: torque of the motor (Nm); Tl: torque of a load (Nm)  
Jm: inertial moment of the motor shaft (kgm2) 
u: applied voltage to the motor (V); ω: angular velocity of the motor shaft (rad/s) 
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Where, K is gain of the motor;  and  are electrical and mechanical time constants 

respectively; and normally,  is much larger than  ( ). 

2.2.2. The ball screw modeling 
To improve the performance of the feed drive system through improving the quality of the 
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Fig. 1. Detailed view of a feed drive
system [13, 14]

In general, the mechanism part of an FD
system mainly comprises a servo motor, ball
screw, linear encoder, and table as shown in
Fig. 1.

2.2. Mathematical modeling

2.2.1. The servo motor modeling

In this paper, a DC servo motor is ad-
dressed, and its block diagram is also de-
scribed as shown in Fig. 2.
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Fig. 2. Block diagram of a DC servo motor

Therefore, the mathematical model of the servo motor is derived as follows

G1(s) =
ω(s)
U(s)

=
Km

(Las + R)(Jms + b) + KmKe
, (1)

where Ra is the armature resistance (Ohm); La is the armature inductance (H); Km is the
torque constant (Nm/A); Ke is the back EMF constant (V/rad/s); Tm is the torque of the
motor (Nm); Tl is the torque of the load (Nm); Jm is the inertial moment of the motor shaft
(kgm2); u : is applied voltage to the motor (V); ω is the angular velocity of the motor shaft
(rad/s).

G1(s) =
ω(s)
U(s)

=
K

(τms + 1)(τes + 1)
, (2)

where K is the gain of the motor; τe and τm are the electrical and mechanical time con-
stants, respectively; and normally, τm is much larger than τe (τm ≫ τe).

2.2.2. The ball screw modeling

To improve the performance of the feed drive system, it is necessary to enhance the
quality of the control system. First, the system’s specifications, states, and modeling must
be accurately analyzed. On that basis, the system controller can be designed.

Therefore, the feed drive system has been fully analyzed and modeled in many stud-
ies. The mechanical components in the system are modeled, and the general block dia-
gram is shown in Fig. 3 [12].
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P is the lead of the ball screw (m), y is the position of the table (m)

Fig. 3. Block diagram of the ball screw
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The mathematical model of the mechanical system is represented by the following
equation

G2(s) =
Y(s)
ω(s)

=
P

2πs
. (3)

2.3. The proposed control structure

2.3.1. The cascade control scheme

The control scheme of the feed drive system presented in this paper is a cascade
control system consisting of two closed loops: the velocity control loop of the servo motor
and the position control loop. Normally, both closed loops use classical controllers such
as PI, P, and PD (Fig. 2). Based on the characteristics of this control structure, disturbances
are attenuated more quickly and their effects are minimized before reaching the primary
loop.

 

control system. First, accurately analyze the system's specification, state, and modeling. On 
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G1(s) is the transfer function of the servo motor, Gc1(s) is the the inner loop controller,
G2(s) is the transfer function of the mechanical system, Gc2(s) is the outer loop controller,

d1 is a disturbance signal in the inner loop

Fig. 4. Block diagram of an FD system

From Fig. 4, the transfer functions of the inner and outer loops are given as follows

Y1(s)
R1(s)

=
Gc1(s)G1(s)

1 + Gc1(s)G1(s)
, (4)

Y2(s)
R2(s)

=
Gc1(s)G1(s)Gc2(s)G2(s)

1 + Gc1(s)G1(s) + Gc1(s)G1(s)Gc2(s)G2(s)
. (5)

2.3.2. PID controller for the secondary loop

Normally, the PID controller has three parameters to tune, including the proportional
gain (Kc), integral time (τI), and derivative time (τD). The transfer function of the PID
controller is given as follows

Gc1(s) = Kc

(
1 +

1
τIs

+ τDs
)

as + 1
bs + 1

, (6)
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where a and b are the two constants of the filter.

2.3.3. The FOPD controller in the frequency domain for the primary loop

Fractional calculus is a generalization of ordinary calculus. Therefore, it gives the
continuous transfer function of the FOPD controller as follows [12, 15]

Gc2 (s) = Kp2 + Kd2sα, (0 < α ≤ 1) . (7)

By substituting s = jω into Eq. (7), the FOPD controller is presented in the frequency
domain in Eq. (8)

Gc2 (jω) = Kp2 + Kd2(jω)α. (8)

Expanding (jω)α gives

(jω)α = ωα jα = ωα
[
ej[ π

2 +2nπ]
]α

= ωα
[
ej[ π

2 α+2nαπ]
]

, (9)

where n = 0,±1
α

,±2
α

, . . . ,±m
α

. Finally, the following equation is derived

(jω)α = ωα (cos γd + j sin γd) , γd =
πα

2
. (10)

A complex equation for the FOPD controller can be obtained by substituting Eq. (10)
into Eq. (8) and rearranging

Gc2 (jω) =
(
Kp2 + Kd2ωα cos γd

)
+ jKd2ωα sin γd , (11)

where γd =
πα

2
.

3. METHODOLOGY

This study addresses the FOPD controller for the primary loop and proposes the IMC
control strategy for the secondary loop. Thus, the proposed cascade control structure is
modified as shown in Fig. 5, where the servo motor model is denoted by G̃1(s) and q(s)
is the IMC controller.

From Figs. 4 and 5, the relationship between the classical controller (Gc1) and the
IMC controller (q) is given as follows

Gc1(s) =
q(s)

1 − G̃1(s)q(s)
. (12)
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Fig. 5. The cascade scheme combined with the IMC structure for the inner loop

3.1. The inner controller design

Eq. (3) is analyzed into two components

G1 (s) = G̃1 (s) = pm (s) pa (s) , (13) pm (s) =
K

(τms + 1) (τes + 1)
,

pa (s) = 1,
(14)

⇒ p−1
m =

(τms + 1) (τes + 1)
K

. (15)

The inner loop includes the servo motor transfer function Eq. (3) and the controller
Gc1(s). In this research, the controller is designed using the IMC structure mentioned
above. The filter, in this case, can also be chosen as follows

q(s) = p−1
m (s) f (s), (16)

where

f (s) =
β1s + 1

(λ1s + 1)2 . (17)

By substituting Eqs. (13), (14) and (16) into Eq. (12), the ideal feedback controller is
obtained as

Gc1 (s) =
(τms + 1) (τes + 1) (β1s + 1)

K
[
(λ1s + 1)2 − (β1s + 1)

] =
(τms + 1) (τes + 1) (β1s + 1)

Ks
(
λ2

1s + 2λ1 − β1
) . (18)

Comparing the ideal controller Eq. (18) with the proposed PID controller Eq. (6), we
can derive the analytical tuning guidelines for the PID controller as follows

τI = τm + τe, τD =
τmτe

τm + τe
, KC =

τm + τe

K(2λ1 − β1)
, (19)
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a = β1, b =
λ2

1
2λ1 − β1

. (20)

There are two poles in the transfer function of the servo motor. Therefore, the value
of β1 is selected to cancel out the pole that is nearest to the imaginary axis (s = −1/τm)
to ensure a fast response as well as the robustness of the inner loop. By substituting
s = −1/τm into the following equation and using Eq. (14), we obtain β1 as follows

1 − G1(s)q(s)|s=−1/τm
=

∣∣∣∣1 − pa(s) (βs + 1)
(λs + 1)2

∣∣∣∣
s=−1/τm

= 0, (21)

⇒ β1 = τm

[
1 −

(
1 − λ1

τm

)2
]

. (22)

3.2. Outer loop design

Fig. 6 displays the block diagram of the outer loop where
(
y1
/

r1
)

d is the desired
closed-loop transfer function of the secondary loop. Consequently, Eq. (23) describes the
equivalent transfer function of the whole controlled system (from r2 to y2)

Y2

R2
=

Gc2(s)
(
y1
/

r1
)

d G2(s)
1 + Gc2(s)

(
y1
/

r1
)

d G2(s)
. (23)
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Fig. 6. The control structure design of the outer loop

From Fig. 6, the primary transfer function and the outer loop controller are derived
as the following equations, Eq. (24) and Eq. (25), respectively

Gp2(s) =
(
y1
/

r1
)

d G2(s) =
βs + 1

(λ2s + 1)2
K2

s
, (24)

Gc2 =
1

Gp2

(
y2
/

r2
)

1 −
(
y2
/

r2
) ≃ 1

G̃p2

(
y2
/

r2
)

d
1 −

(
y2
/

r2
)

d
. (25)

Ideally, G̃p2(s) = Gp2(s) =
βs + 1

(λ2s + 1)2
K2

s
, and

(
y2
/

r2
)

d is the desired response of the

outer loop. In this case, it is chosen as in Eq. (26) to guarantee the strict requirements of a
servo system.
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y2

r2

)
d
=

1
λ2s + 1

, (26)

where λ2 is the desired response time of the outer-loop control system.

By substituting Eq. (26) and G̃p2 into Eq. (25), the primary controller is obtained

Gc2 =
s(λ1s + 1)2

K2(βs + 1)
1

λ2s
=

(λ1s + 1)2

K2λ2(βs + 1)
. (27)

Substituting s = jω to convert Gc2 into the frequency domain in complex form, we
have

Gc2 =
1 + 2βλω2 − λ2ω2

K2λ2(1 + β2ω2)
+ j

ω(2λ − β + βλ2ω2)

K2λ2(1 + β2ω2)
. (28)

Comparing Eq. (28) and Eq. (11), the tuning rules of the outer loop controller are
obtained as

Kd2 =
1

ωα sin γd

ω(2λ − β + βλ2ω2)

K2λ2(1 + β2ω2)
, (29)

Kp2 =
1 − λ2ω2 + 2βλω2

K2λ2(1 + β2ω2)
− cos γd

sin γd

(2λ − β + βλ2ω2)ω

K2λ2(1 + β2ω2)
. (30)

Note that the value of ω will be chosen to guarantee the robustness of the controlled
system based on the maximum sensitivity function, which is described in the next section.

4. PERFORMANCE AND ROBUSTNESS MEASUREMENTS

4.1. Performance indices

4.1.1. Overshoot

Overshoot is a performance index that evaluates the peak of the response after a step
change in set-point or disturbance. Normally, it is calculated as a percentage.

4.1.2. Integral absolute error (IAE)

The IAE criterion is used to evaluate the closed-loop performance for disturbance
rejection as well as set-point tracking. It is defined as

IAE =

∞∫
0

|e (t)|dt. (31)
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4.1.3. Total variation (TV)

TV is a good measure of the signal’s smoothness. It describes the total variation of
the manipulated variable. It is calculated by the following equation

TV =
∞

∑
i=1

|ui+1 − ui|. (32)

In a control system, this index should also be as small as possible.

4.2. Robust stability

Normally, the maximum sensitivity function, which is defined in Eq. (34), is used to
verify the robust stability of a feedback control loop

Ms = max
ω

|S(jω)| , (33)

where S = (1 + L)−1, and L is an open-loop transfer function of the controlled system.
Typically, |S| is small at lower frequencies and approaches 1 at higher frequencies. How-
ever, at certain specific frequencies, a peak value of Ms can be larger than 1 which de-
teriorates the system performance [12]. Consequently, the peak value of Ms is generally
utilized to assess the robustness of the controlled system concerning both robust stability
and system performance. According to Skogestad and Postlethwaite [16], the value of Ms

should ideally be close to 1. Therefore, in this work, the value of frequency ω is selected
based on maintaining this value close to 1.

5. SIMULATION STUDY

To demonstrate the effectiveness of the proposed method above, we consider the
following case: the parameters of a DC servo motor and a lead ball screw are given in
Table 1.

Table 1. Parameters of the DC servo motor and lead ball screw [12]

Parameters Description Values

La Armature inductance 8 × 10−5 (H)
Ra Armature resistance 0.316 (Ohm)
Jm Torque developed by the motor 1.34 × 10−5 (kg.m2)
B Viscous friction constant of motor and load 1.82 × 10−5 (Nm/rad/s)

Km Torque constant 0.03 (Nm/A)
Ke Back EMF constant 0.03 (V/rad/s)
P Pitch of ball screw 0.01 (m)
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From the above parameters and Eqs. (1) and (2), we derive the transfer function of
the servo motor

G1(s) =
ω (s)
U(s)

=
33.1217

(0.0464s + 1) (0.00039544s + 1)
. (34)

For the inner loop, the adjustable parameter λ is chosen as λ = 0.01. Therefore, from
Eqs. (20) and (21), the control parameters of the inner loop are obtained as

β1 = 0.0178, Kc1 = 0.6557, τI = 0.0468, τD = 3.92 × 10−4, a = 0.0178, b = 0.0464.

For the primary loop, the fractional order is chosen to be less than 1 due to the over-
damped characteristic of the controlled system. Fig. 7 illustrates the position responses
for α = 0.7, α = 0.8, and α = 0.9, respectively. From the figure, it can be seen that the
larger the value of α, the faster the response of the controlled system. In this work, α is
chosen as 0.8 to guarantee both the system response and the robustness of the system.
Then, the frequency ω is chosen to keep the Ms value close to 1. In this case, ω = 100 and
Ms = 1.057. According to Eqs. (29) and (30), the outer loop controller is derived as

Gc2(s) = 43833 + 793.167s0.8. (35)
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Fig. 7. The position response with various values of α

The suggested approach and the traditional PD/PID controller [17] for the cascade
system are contrasted in this study. Table 2 lists the controllers’ parameters as well as the
performance metrics of the suggested approach, such as overshoot, absolute error, and
total variation (TV).

Figs. 8 and 9 display the closed-loop responses for the outer loop (position) and the
inner loop (velocity), respectively. It is clear from these figures that the tracking con-
trol fully satisfies the stringent requirements for the feed drive system, achieving a quick
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Table 2. The controller parameters and the performance indices

Inner loop Outer loop

Proposed
(FOPD/PID) Gc1(s) = 0.6557

(
1 +

1
0.0468s

+ 0.000392s
)

0.0178s + 1
0.0464s + 1

Gc2(s) = 43833 + 793.167s0.8

PD/PID Gc1(s) = 1.7649
(

1 +
1

0.0047s
+ 0.000253s

)
1

0.00002s + 1
Gc2(s) = 3927000 + 157.079s

TV 0.9999

IAE 0.4453

Overshoot 0 (%)

response and no overshoot in both methodologies. However, in Fig. 9, the velocity re-
sponse of the PD/PID method exhibits oscillations at the target position. The control
signals are presented in Fig. 10 to demonstrate that the proposed method yields a rela-
tively smooth control signal, remaining within the rated voltage limit (24 V) of the servo
motor. Additionally, the control signal from the proposed method is contrasted with that
of the classical controllers. Fig. 11 shows that the control signal from the classical method
experiences high-frequency oscillations to maintain an equivalent position response to
that of the proposed method.
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Fig. 9. The velocity response of the inner loop

Fig. 12 illustrates the movement of the sliding table in both directions. It is obvious
that the forward and backward movements still guarantee the requirements of the servo
system in terms of fast response and no overshoot at the target position. However, the
proposed method still has a restriction regarding the choice of the fractional order value.
Its value is obtained through simulation without being analytically proven.
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6. CONCLUSION

In this study, a cascade control architecture consisting of two control loops is pro-
posed for the feed drive system. The inner loop is responsible for controlling velocity,
while the outer loop manages position. A PID controller equipped with a filter is rec-
ommended for the inner loop, and a FOPD controller is suggested for the outer loop.
The tuning guidelines for the inner controller are derived from the widely recognized
IMC framework, while the outer controller is formulated in the frequency domain, with
the frequency coefficient selected to guarantee the robustness of the controlled system.
Furthermore, during the design of both control loops, the desired response times are de-
termined to satisfy the stringent demands of the feed drive system’s position control. The
results from simulations indicate that the proposed methods deliver impressive position
tracking with a quick response time and no overshoot.
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