Hypothermic storage of Vietnamese stem cells from exfoliated deciduous teeth using crystalloid electrolyte solutions
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-22325Keywords:
Mesenchymal stem cells, human exfoliated deciduous teeth, hypothermic preservation, crystalloid electrolyte solution, Lactate Ringer, DextroseAbstract
Preserving the quality of mesenchymal stem cells (MSCs) during storage is crucial for their effective use in clinical applications, particularly in regenerative medicine and tissue engineering. This study investigated the effects of crystalloid electrolyte solutions on the hypothermic storage of Stem cells derived from Human Exfoliated Deciduous teeth (SHED) of Vietnamese, focusing on maintaining cell viability, proliferation, and adhesion capacities. Before storage, the cells were cultured and characterized for immunophenotypic markers, as well as osteogenic and adipogenic differentiation potentials. They were then stored in Lactated Ringer (LR) and Dextrose 5% in Lactated Ringer's (D5LR) at 4 or 25°C for 2, 4, and 6 hours. Post-storage assessments revealed that LR at 4°C was the more effective solution, preserving cell viability and proliferation ability after 6 hours of storage. However, a significant reduction in cell adhesion was observed under these conditions. Conversely, cells stored in Dextrose 5% plus Lactate Ringer completely lost their capacity to proliferate and adhere to plastic surfaces, indicating its unsuitability for preserving cells. This study marks the first successful isolation of SHED from Vietnamese teeth, while also highlighting the potential of Lactate Ringer at 4°C as an optimal short-term storage solution, ensuring the functional integrity of SHED for clinical transplantation. This approach offers promising applications in the field of regenerative medicine, supporting advancements in therapeutic strategies for tissue repair and engineering.
Downloads
References
Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815-1822. https://doi.org/10.1182/blood-2004-04-1559
Ahmad Khalili, A., & Ahmad, M. R. (2015). A review of cell adhesion studies for biomedical and biological applications. International Journal of Molecular Sciences, 16(8), 18149-18184. https://doi.org/10.3390/ijms160818149
Aldridge, V., Garg, A., Davies, N., Bartlett, D. C., Youster, J., Beard, H., et al. (2012). Human mesenchymal stem cells are recruited to injured liver in a β1-integrin and CD44 dependent manner. Hepatology, 56(3), 1063-1073. https://doi.org/10.1002/hep.25716
Alva, N., Palomeque, J., & Carbonell, T. (2013). Oxidative stress and antioxidant activity in hypothermia and rewarming: can RONS modulate the beneficial effects of therapeutic hypothermia? Oxidative Medicine and Cellular Longevity, 2013(1), 957054. https://doi.org/ 10.1155/2013/957054
Andrzejewska, A., Dabrowska, S., Lukomska, B., & Janowski, M. (2021). Mesenchymal stem cells for neurological disorders. Advanced Science, 8(7), 2002944. https://doi.org/10.1002/advs.202002944
Arora, V., Arora, P., & Munshi, A. (2009). Banking stem cells from human exfoliated deciduous teeth (SHED): saving for the future. Journal of Clinical Pediatric Dentistry, 33(4), 289-294. https://doi.org/10.17796/jcpd.33.4.y887672r0j703654
Baicu, S. C., & Taylor, M. J. (2002). Acid–base buffering in organ preservation solutions as a function of temperature: new parameters for comparing buffer capacity and efficiency. Cryobiology, 45(1), 33-48. https://doi.org/10.1016/S0011-2240(02)00104-9
Bates, D. A., & MacKillop, W. J. (1985). The effect of hyperthermia on the sodium-potassium pump in Chinese hamster ovary cells. Radiation Research, 103(3), 441-451. https://doi.org/10.23 07/3576766
Belzer, F. O., & Southard, J. H. (1988). Principles of solid-organ preservation by cold storage. Transplantation, 45(4), 673-676. https://doi.org/10.1097/00007890-198804000-00001
Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., & Vescovi, A. L. (1999). Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science, 283(5401), 534-537. https://doi.org/10.1126/science.283.5401.534
Bonventre, J. V., & Cheung, J. Y. (1985). Effects of metabolic acidosis on viability of cells exposed to anoxia. American Journal of Physiology-Cell Physiology, 249(1), C149-C159. https://doi.org/10.1152/ajpcell.1985.249.1.C149
Boutilier, R. G. (2001). Mechanisms of cell survival in hypoxia and hypothermia. Journal of Experimental Biology, 204(18), 3171-3181. https://doi.org/10.1242/jeb.204.18.3171
Brinkkoetter, P.-T., Song, H., Lösel, R., Schnetzke, U., Gottmann, U., Feng, Y., et al. (2008). Hypothermic injury: the mitochondrial calcium, ATP and ROS love-hate triangle out of balance. Cellular Physiology and Biochemistry, 22(1-4), 195-204. https://doi.org/10.1159/000149812
Carmeliet, P., Dor, Y., Herbert, J.-M., Fukumura, D., Brusselmans, K., Dewerchin, M., et al. (1998). Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394(6692), 485-490. https://doi.org/10.1038/28867
Chadipiralla, K., Yochim, J. M., Bahuleyan, B., Huang, C.-Y. C., Garcia-Godoy, F., Murray, P. E., et al.(2010). Osteogenic differentiation of stem cells derived from human periodontal ligaments and pulp of human exfoliated deciduous teeth. Cell and Tissue Research, 340, 323-333. https://doi.org/10.1007/s00441-010-0953-0
Chai, Y., Jiang, X., Ito, Y., Bringas Jr, P., Han, J., Rowitch, D. H., et al. (2000). Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 127(8), 1671-1679. https://doi.org/10.1242/dev.127.8.1671
Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25(11), 2739-2749. https://doi.org/10.1634/stemcells.2007-0197
Chen, Y., Yu, B., Xue, G., Zhao, J., Li, R.-K., Liu, Z., et al. (2013). Effects of storage solutions on the viability of human umbilical cord mesenchymal stem cells for transplantation. Cell Transplantation, 22(6), 1075-1086. https://doi.org/10.3727/096368912X657602
Correia, C., Koshkin, A., Carido, M., Espinha, N., Šarić, T., Lima, P. A., et al. (2016). Effective hypothermic storage of human pluripotent stem cell-derived cardiomyocytes compatible with global distribution of cells for clinical applications and toxicology testing. Stem Cells Translational Medicine, 5(5), 658-669. https://doi.org/10.5966/sctm.2015-0238
Cosby, C. N., Troiano, N. W., & Kacena, M. A. (2008). The effects of storage conditions on the preservation of enzymatic activity in bone. Journal of Histotechnology, 31(4), 169-173. https://doi.org/10.1179/his.2008.31.4.169
Couchman, J. R. (2010). Transmembrane signaling proteoglycans. Annual Review of Cell and Developmental Biology, 26(1), 89-114. https://doi.org/10.1146/annurev-cellbio-100109-104126
Dai, J., & Meng, Q. (2011). Differential function of protective agents at each stage of the hypothermic preservation of hepatocytes. The Journal of Biochemistry, 149(6), 739-745. https://doi.org/10.1093/jb/mvr030
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. https://doi.org/10.1080/14653240600855905
Duret, C., Moreno, D., Balasiddaiah, A., Roux, S., Briolotti, P., Raulet, E., et al. (2015). Cold preservation of human adult hepatocytes for liver cell therapy. Cell Transplantation, 24(12), 2541-2555. https://doi.org/10.3727/096368915X687020
Eliasson, P., & Jönsson, J. I. (2010). The hematopoietic stem cell niche: low in oxygen but a nice place to be. Journal of Cellular Physiology, 222(1), 17-22. https://doi.org/10.1002/jcp.21908
Eliasson, P., Rehn, M., Hammar, P., Larsson, P., Sirenko, O., Flippin, L. A., et al. (2010). Hypoxia mediates low cell-cycle activity and increases the proportion of long-term–reconstituting hematopoietic stem cells during in vitro culture. Experimental Hematology, 38(4), 301-310. e302. https://doi.org/10.1016/j.exphem.2010.01.004
Ellory, J., & Willis, J. (1982). Kinetics of the sodium pump in red cells of different temperature sensitivity. The Journal of General Physiology, 79(6), 1115-1130. https://doi.org/10.1085/jgp.79.6.1115
Farouz, Y., Chen, Y., Terzic, A., & Menasche, P. (2014). Growing hearts in the right place: on the design of biomimetic materials for cardiac stem cell differentiation. Stem Cells. https://doi.org/10.1002/stem.1929
Freitas-Ribeiro, S., Carvalho, A. F., Costa, M., Cerqueira, M. T., Marques, A. P., Reis, R. L., et al. (2019). Strategies for the hypothermic preservation of cell sheets of human adipose stem cells. PLoS One, 14(10), e0222597. https://doi.org/10.1371/journal.pone.0222597
Gardner, L. B., Li, Q., Park, M. S., Flanagan, W. M., Semenza, G. L., & Dang, C. V. (2001). Hypoxia inhibits G1/S transition through regulation of p27 expression. Journal of Biological Chemistry, 276(11), 7919-7926. https://doi.org/10.1074/jbc.M010189200
Ginis, I., Grinblat, B., & Shirvan, M. H. (2012). Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium. Tissue Engineering Part C: Methods, 18(6), 453-463. https://doi.org/10.1089/ten.tec.2011.0415
Goda, N., Ryan, H. E., Khadivi, B., McNulty, W., Rickert, R. C., & Johnson, R. S. (2003). Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia. Molecular and Cellular Biology, 23(1), 359-369. https://doi.org/10.1128/MCB.23.1.359-369.2003
Gramignoli, R., Dorko, K., Tahan, V., Skvorak, K. J., Ellis, E., Jorns, C., et al. (2014). Hypothermic storage of human hepatocytes for transplantation. Cell Transplantation, 23(9), 1143-1151. https://doi.org/10.3727/096368913X668627
Granero-Molto, F., Weis, J. A., Longobardi, L., & Spagnoli, A. (2008). Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opinion on Biological Therapy, 8(3), 255-268. https://doi.org/10.1517/14712598.8.3.255
Gronthos, S., Stewart, K., Graves, S. E., Hay, S., & Simmons, P. J. (1997). Integrin expression and function on human osteoblast‐like cells. Journal of Bone and Mineral Research, 12(8), 1189-1197. https://doi.org/10.1359/jbmr.1997.12.8.1189
Gronthos, S., Zannettino, A. C., Graves, S. E., Ohta, S., Hay, S. J., & Simmons, P. J. (1999). Differential cell surface expression of the STRO‐1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. Journal of Bone and Mineral Research, 14(1), 47-56. https://doi.org/10.1359/jbmr.1999.14.1.47
Guibert, E. E., Petrenko, A. Y., Balaban, C. L., Somov, A. Y., Rodriguez, J. V., & Fuller, B. J. (2011). Organ preservation: current concepts and new strategies for the next decade. Transfusion Medicine and Hemotherapy, 38(2), 125-142. https://doi.org/10.1159/000327033
Hackenbeck, T., Knaup, K. X., Schietke, R. E., Schödel, J., Willam, C., Wu, X., et al. (2009). HIF-1 or HIF-2 induction is sufficient to achieve cell cycle arrest in NIH3T3 mouse fibroblasts independent from hypoxia. Cell Cycle, 8(9), 1386-1395. https://doi.org/10.4161/cc.8.9.8306
Heddle, N. M., Cook, R. J., Arnold, D. M., Liu, Y., Barty, R., Crowther, M. A., et al. (2016). Effect of short-term vs. long-term blood storage on mortality after transfusion. New England Journal of Medicine, 375(20), 1937-1945. https://doi.org/10.1056/NEJMoa1609014
Hochachka, P. W., & Mommsen, T. P. (1983). Protons and anaerobiosis. Science, 219(4591), 1391-1397. https://doi.org/10.1126/science.629 8937
Hubbi, M. E., Kshitiz, Gilkes, D. M., Rey, S., Wong, C. C., Luo, W., et al. (2013). A nontranscriptional role for HIF-1α as a direct inhibitor of DNA replication. Science Signaling, 6(262), ra10-ra10. https://doi.org/10.1126/scisignal.2003417
Jamieson, N. V., Sundberg, R., Lindell, S., Claesson, K., Moen, J., Vreugdenhil, P. K., et al. (1988). Preservation of the canine liver for 24–48 hours using simple cold storage with UW solution. Transplantation, 46(4), 517-522. https://doi.org/10.1097/00007890-198810000-00010
Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2007). Erratum: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 447(7146), 880-881. https://doi.org/10.1038/nature00870
Karakoyun, R., Romano, A., Nordström, J., Ericzon, B.-G., & Nowak, G. (2019). Type of preservation solution, UW or HTK, has an impact on the incidence of biliary stricture following liver transplantation: a retrospective study. Journal of Transplantation, 2019(1), 8150736. https://doi.org/10.1155/2019/8150736
Kartiko, B. H., Siswanto, F. M., & Purwata, T. E. (2017). Mesenchymal stem cell (MSC) as a potential cell therapy for immune related disease. Bali Medical Journal, 6(1), 38-43. https://doi.org/10.15562/bmj.v6i1.408
Kaviti, H., John, J., Gulla, K. M., & Sahu, S. (2024). 5% dextrose in ringer’s lactate versus 5% dextrose normal saline as maintenance intravenous fluid therapy in children—A randomised controlled trial. Indian Journal of Pediatrics, 1-6. https://doi.org/10.1007/s12098-024-04670-7
Kemp, P. (2006). History of regenerative medicine: looking backwards to move forwards. Regenerative Medicine, 1(5), 653-669. https:// doi.org/10.2217/17460751.1.5.653
Kerkis, I., Kerkis, A., Dozortsev, D., Stukart-Parsons, G. C., Gomes Massironi, S. M., Pereira, L. V., et al. (2007). Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs, 184(3-4), 105-116. https://doi.org/10.1159/000099617
Ko, C.-S., Chen, J.-H., & Su, W.-T. (2020). Stem cells from human exfoliated deciduous teeth: a concise review. Current Stem Cell Research & Therapy, 15(1), 61-76. https://doi.org/10.2174/1574888X14666191018122109
LaBonne, C., & Bronner-Fraser, M. (1999). Molecular mechanisms of neural crest formation. Annual Review of Cell and Developmental Biology, 15(1), 81-112. https:// doi.org/10.1146/annurev.cellbio.15.1.81
Lee, J. W., Kim, Y. H., Park, K. D., Jee, K. S., Shin, J. W., & Hahn, S. B. (2004). Importance of integrin β1-mediated cell adhesion on biodegradable polymers under serum depletion in mesenchymal stem cells and chondrocytes. Biomaterials, 25(10), 1901-1909. https://doi.org/10.1016/j.biomaterials.2003.08.073
Li, Z., Han, Z., & Han, Z.-C. (2024). Mesenchymal stem cells in clinical trials for immune disorders. Global Medical Genetics, 11(03), 196-199. https://doi.org/10.1055/s-0044-1788044
Li, Z., Hu, X., & Zhong, J. F. (2019). Mesenchymal stem cells: characteristics, function, and application. Stem Cells International, 2019, 8106818. https://doi.org/10.1155/2019/8106818
Liang, C., Li, H., Tao, Y., Zhou, X., Li, F., Chen, G., et al. (2012). Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc. Journal of Translational Medicine, 10, 1-10. https://doi.org/10.1186/1479-5876-10-49
Lo Surdo, J., & Bauer, S. R. (2012). Quantitative approaches to detect donor and passage differences in adipogenic potential and clonogenicity in human bone marrow-derived mesenchymal stem cells. Tissue Engineering Part C: Methods, 18(11), 877-889. https://doi.org/10.1089/ten.tec.2011.0702
Ma, Y., Gao, L., Tian, Y., Chen, P., Yang, J., & Zhang, L. (2021). Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomaterialia, 131, 97-116. https://doi.org/10.1016/j.actbio.2021.07.025
Maathuis, M.-H. J., Leuvenink, H. G., & Ploeg, R. J. (2007). Perspectives in organ preservation. Transplantation, 83(10), 1289-1298. https://doi.org/10.1097/01.tp.0000265586.66475.cc
Malbrain, M. L., Langer, T., Annane, D., Gattinoni, L., Elbers, P., Hahn, R. G., et al. (2020). Intravenous fluid therapy in the perioperative and critical care setting: executive summary of the International Fluid Academy (IFA). Annals of Intensive Care, 10, 1-19. https://doi.org/10.1186/s13613-020-00679-3
Massia, S. P., & Hubbell, J. A. (1991). An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. The Journal of Cell Biology, 114(5), 1089-1100. https://doi.org/10.1083/jcb.114.5.1089
Mathew, A. J., Van Buskirk, R. G., & Baust, J. G. (2002). Improved hypothermic preservation of human renal cells through suppression of both apoptosis and necrosis. Cell Preservation Technology, 1(4), 239-253. https://doi.org/10.1089/153834402321018950
Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., et al. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences, 100(10), 5807-5812. https://doi.org/10.1073/pnas.0937635100
Morsczeck, C., Schmalz, G., Reichert, T. E., Völlner, F., Galler, K., & Driemel, O. (2008). Somatic stem cells for regenerative dentistry. Clinical Oral Investigations, 12, 113-118. https://doi.org/10.1007/s00784-007-0170-8
Mushahary, D., Spittler, A., Kasper, C., Weber, V., & Charwat, V. (2018). Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry Part A, 93(1), 19-31. https://doi.org/10.1002/cyto.a.23242
Nakajima, K., Kunimatsu, R., Ando, K., Ando, T., Hayashi, Y., Kihara, T., et al. (2018). Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells. Biochemical and Biophysical Research Communications, 497(3), 876-882. https://doi.org/10.1016/j.bbrc.2018.02.153
Nuschke, A., Rodrigues, M., Wells, A. W., Sylakowski, K., & Wells, A. (2016). Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation. Stem Cell Research & Therapy, 7, 1-9. https://doi.org/10.1186/s13287-016-0436-7
Olivares-Navarrete, R., Rodil, S. E., Hyzy, S. L., Dunn, G. R., Almaguer-Flores, A., Schwartz, Z., et al. (2015). Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carbon-coated microstructured surfaces. Biomaterials, 51, 69-79. https://doi.org/10.1016/j.biomaterials.2015. 01.009
Orbegozo Cortés, D., Rayo Bonor, A., & Vincent, J. L. (2014). Isotonic crystalloid solutions: a structured review of the literature. British Journal of Anaesthesia, 112(6), 968-981. https://doi.org/10.1093/bja/aeu047
Petrenko, Y., Chudickova, M., Vackova, I., Groh, T., Kosnarova, E., Cejkova, J., et al. (2019). Clinically relevant solution for the hypothermic storage and transportation of human multipotent mesenchymal stromal cells. Stem Cells International, 2019(1), 5909524. https://doi.org/10.1155/2019/5909524
Post, I. C., de Boon, W. M., Heger, M., van Wijk, A. C., Kroon, J., van Buul, J. D., et al. (2013). Endothelial cell preservation at hypothermic to normothermic conditions using clinical and experimental organ preservation solutions. Experimental Cell Research, 319(17), 2501-2513. https://doi.org/10.1016/j.yexcr.2013.06.005
Prahasanti, C., Nugraha, A. P., Saskianti, T., Suardita, K., Riawan, W., & Ernawati, D. S. (2020). Exfoliated human deciduous tooth stem cells incorporating carbonate apatite scaffold enhance BMP-2, BMP-7 and attenuate MMP-8 expression during initial alveolar bone remodeling in wistar rats (Rattus norvegicus). Clinical, Cosmetic and Investigational Dentistry, 79-85. https://doi.org/10.2147/CCIDE.S245678
Ramírez, M., Lucia, A., Gómez-Gallego, F., Esteve-Lanao, J., Pérez-Martínez, A., Foster, C., et al. (2006). Mobilisation of mesenchymal cells into blood in response to skeletal muscle injury. British Journal of Sports Medicine, 40(8), 719-722. https://doi.org/10.1136/bjsm.2006.028639
Reddi, A. S. (2018). Fluid, electrolyte and acid-base disorders. Cham, Switzerland: Springer, 391-401. https://doi.org/10.1007/978-3-319-60167-0
Rochefort, G. Y., Delorme, B., Lopez, A., Hérault, O., Bonnet, P., Charbord, P., et al. (2006). Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells, 24(10), 2202-2208. https://doi.org/ 10.1634/stemcells.2006-0164
Rubinsky, B. (2003). Principles of low temperature cell preservation. Heart Failure Reviews, 8, 277-284. https://doi.org/10.1023/ A:1024734003814
Salahudeen, A. K., Joshi, M., & Jenkins, J. K. (2001). Apoptosis versus necrosis during cold storage and rewarming of human renal proximal tubular cells. Transplantation, 72(5), 798-804. https://doi.org/10.1097/00007890-200109150-00019
Sebastian, A. A., Kannan, T. P., Norazmi, M. N., & Nurul, A. A. (2018). Interleukin‐17A promotes osteogenic differentiation by increasing OPG/RANKL ratio in stem cells from human exfoliated deciduous teeth (SHED). Journal of Tissue Engineering and Regenerative Medicine, 12(8), 1856-1866. https://doi.org/ 10.1002/term.2706
Segers, V. F., Van Riet, I., Andries, L. J., Lemmens, K., Demolder, M. J., De Becker, A. J., et al. (2006). Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms. American Journal of Physiology-Heart and Circulatory Physiology, 290(4), H1370-H1377. https://doi.org/10.1152/ ajpheart.00523.2005
Shariati, A., Nemati, R., Sadeghipour, Y., Yaghoubi, Y., Baghbani, R., Javidi, K., et al. (2020). Mesenchymal stromal cells (MSCs) for neurodegenerative disease: a promising frontier. European Journal of Cell Biology, 99(6), 151097. https://doi.org/10.1016/j.ejcb.2020.151 097
Silva, F. d. S., Ramos, R. N., Almeida, D. C. d., Bassi, E. J., Gonzales, R. P., Miyagi, S. P. H., et al. (2014). Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs) induce immune modulatory profile in monocyte-derived dendritic cells. PLoS One, 9(5), e98050. https://doi.org/10.1371/journal.pone.0098050
Trujillo-Zea, J. A., Aristizábal-Henao, N., & Fonseca-Ruiz, N. (2015). Lactated Ringer's vs. normal saline solution for renal transplantation: Systematic review and meta-analysis. Colombian Journal of Anesthesiology, 43(3), 194-203. https://doi.org/10.1016/j.rcae.2015.04. 002
Ullah, M., Liu, D. D., & Thakor, A. S. (2019). Mesenchymal stromal cell homing: mechanisms and strategies for improvement. Iscience, 15, 421-438. https://doi.org/10.1016/j.isci.2019.05. 004
Vreugdenhil, P. K., Ametani, M. S., Haworth, R. A., & Southard, J. H. (1999). Biphasic mechanism for hypothermic induced loss of protein synthesis in Hepatocytes1. Transplantation, 67(11), 1468-1473. https://doi.org/10.1097/00007890-199906150-00013
Winning, L., El Karim, I. A., & Lundy, F. T. (2019). A comparative analysis of the osteogenic potential of dental mesenchymal stem cells. Stem Cells and Development, 28(15), 1050-1058. https://doi.org/10.1089/scd.2019.0023
Xu, J. G., Zhu, S. Y., Heng, B. C., Dissanayaka, W. L., & Zhang, C. F. (2017). TGF-β1-induced differentiation of SHED into functional smooth muscle cells. Stem Cell Research & Therapy, 8, 1-10. https://doi.org/10.1186/s13287-016-0459-0
Yang, J., Gao, L., Liu, M., Sui, X., Zhu, Y., Wen, C., et al. (2020). Advanced biotechnology for cell cryopreservation. Transactions of Tianjin University, 26, 409-423. https://doi.org/10.1007/s12209-019-00227-6
Zhai, Y., Wang, Y., Rao, N., Li, J., Li, X., Fang, T., et al. (2019). Activation and biological properties of human β Defensin 4 in stem cells derived from human exfoliated deciduous teeth. Frontiers in Physiology, 10, 1304. https://doi.org/10.3389/fphys.2019.01304
Zhang, H., Li, W., Wu, Y., Zhang, S., Li, J., Han, L., et al. (2022). Effects of changes in osmolarity on the biological activity of human normal nucleus pulposus mesenchymal stem cells. Stem Cells International, 2022(1), 1121064. https://doi.org/10.1155/2022/1121064
Zhang, N., Chen, B., Wang, W., Chen, C., Kang, J., Deng, S. Q., et al. (2016). Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Molecular Medicine Reports, 14(1), 95-102. https://doi.org/10.3892/mmr.2016.5214