Construction and transient expression of the Cap protein of porcine circovirus 3 in Nicotiana benthamiana
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-23481Keywords:
Agrobacterium tumefaciens, Cap3 protein,, GCN4pII motif,, Nicotiana benthamiana,, porcine circovirus 3, transient expression.Abstract
Porcine circovirus (PCV) leads to severe illnesses in pigs, including postweaning multisystemic wasting syndrome (PMWS), reproductive impairments, and kidney disease syndrome. Among the four recognized genotypes (PCV1–PCV4), PCV3 has emerged as a globally distributed pathogen that includes Vietnam and represents a major economic burden to the global pig farming industry. Acting as a major immunogen, the Cap protein effectively induces protective immunity, highlighting its potential as a target antigen for subunit vaccines against PCV3. In this study, a plant expression vector carrying the gene encoding the Cap3 protein fused with the GCN4pII motif (Cap3-pII) was constructed and then introduced into Agrobacterium tumefaciens. The transformed bacteria were then infiltrated into Nicotiana benthamiana leaves. Western blot analysis confirmed the expression level of the Cap3-pII protein, with a yield of approximately 13 mg/kg of fresh leaf. These results provide a basis for further research on developing a subunit vaccine against PCV3 using transient expression technology in plants.
Downloads
References
Bi M., Li, X., Zhai W., Yin B., Tian K., & Mo X. (2020). Structural insight into the type-specific epitope of porcine circovirus type 3. Bioscience Reports, 40(6), BSR20201109. https://doi.org/10.1042/BSR20201109
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Chae C. (2005). A review of porcine circovirus 2-associated syndromes and diseases. Veterinary Journal, 169(3), 326–336. https://doi.org/10.1016/j.tvjl.2004.01.012
Chang C.-C., Wu C.-Y., Ciou J.-G., Wu C.-W., Wang Y.-C., Chang H.-W., et al. (2023). Exploring the surface epitope and nuclear localization analysis of porcine circovirus type 3 capsid protein. AMB Express, 13(1), 141. https://doi.org/10.1186/s13568-023-01652-6
Chung H. C., Nguyen V. G., Park Y. Ho & Park, B. K. (2021). Genotyping of PCV3 based on reassembled viral gene sequences. Veterinary Medicine and Science, 7(2), 474–482. https://doi.org/10.1002/vms3.374
Cino-Ozuna A. G., Henry S., Hesse R., Nietfeld J. C., Bai J., Scott H. M., et al. (2011). Characterization of a new disease syndrome associated with porcine circovirus type 2 in previously vaccinated herds. Journal of Clinical Microbiology, 49(5), 2012–2016. https://doi.org/10.1128/JCM.02543-10
Dinh P. X., Nguyen H. N., Lai D. C., Nguyen T. T., Nguyen N. M., & Do D. T. (2023). Genetic diversity in the capsid protein gene of porcine circovirus type 3 in Vietnam from 2018 to 2019. Archives of Virology, 168(1), 30. https://doi.org/10.1007/s00705-022-05661-x
Fahad S., Khan F. A., Pandupuspitasari N. S., Ahmed M. M., Liao Y. C., Waheed M. T., et al. (2015). Recent developments in therapeutic protein expression technologies in plants. Biotechnology Letters, 37(2), 265–279. https://doi.org/10.1007/s10529-014-1699-7
Fernandes F., Teixeira A. P., Carinhas N., Carrondo, M. J. T., & Alves, P. M. (2013). Insect cells as a production platform of complex virus-like particles. Expert Review of Vaccines, 12(2), 225–236. https://doi.org/10.1586/erv.12.153
Guo Z., Li, X., Deng R., & Zhang G. (2019). Detection and genetic characteristics of porcine circovirus 3 based on oral fluids from asymptomatic pigs in central China. BMC Veterinary Research, 15(1), 200. https://doi.org/10.1186/s12917-019-1952-3
Gunter C. J., Regnard G. L., Rybicki E. P., & Hitzeroth I. I. (2019). Immunogenicity of plant-produced porcine circovirus-like particles in mice. Plant Biotechnology Journal, 17(9), 1751–1759. https://doi.org/10.1111/pbi.13097
Harbury P. B., Zhang T., Kim P. S., & Alber T. (1993). A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science, 262(5138), 1401–1407. https://doi.org/10.1126/science.8248779
Ho T. T., Trinh V. T., Tran H. X., Le P. T. T., Nguyen T, et al. (2022). The immunogenicity of plant-based COE-GCN4pII protein in pigs against the highly virulent porcine epidemic diarrhea virus strain from genotype 2. Frontiers in Veterinary Science, 9, 940395. https://doi.org/10.3389/fvets.2022.940395
Lv W., Cao L., Yang L., Wang N., Li Z., Huang, S., et al. (2023). The prevalence and genetic diversity of porcine circoviruses (PCVs) during 2017–2023 in Guangdong province, China. Animals, 13(23). https://doi.org/10.3390/ani13233640
Maity H. K., Samanta K., Deb R., & Gupta V. K. (2023). Revisiting porcine circovirus infection: recent insights and its significance in the piggery sector. Vaccines, 11(8), 1308. https://doi.org/10.3390/vaccines11081308
Molossi F. A., de Cecco B. S., de Almeida B. A., Henker L. C., da Silva M. S., Mósena A. C. S., et al. (2022). PCV3-associated reproductive failure in pig herds in Brazil. Tropical Animal Health and Production, 54(5), 293. https://doi.org/10.1007/s11250-022-03282-9
Oh T., Suh J., Cho H., Min K., Choi B.-H., & Chae C. (2022). Efficacy test of a plant-based porcine circovirus type 2 (PCV2) virus-like particle vaccine against four PCV2 genotypes (2a, 2b, 2d, and 2e) in pigs. Veterinary Microbiology, 272, 109512. https://doi.org/10.1016/j.vetmic.2022.109512
Opriessnig T., Karuppannan A. K., Castro A. M. M. G., & Xiao C. T. (2020). Porcine circoviruses: status, knowledge gaps and challenges. Virus Research, 286, 198044. https://doi.org/10.1016/j.virusres.2020.198044
Palinski R., Piñeyro P., Shang P., Yuan F., Guo R., Fang Y., et al. (2017). A novel porcine circovirus distantly related to known circoviruses is associated with porcine dermatitis and nephropathy syndrome and reproductive failure. Journal of Virology, 91(1), 10.1128. https://doi.org/10.1128/jvi.01879-16
Park K. H., Cho H., Suh J., Oh T., Park Y., Park S., et al. (2023). Field evaluation of novel plant-derived porcine circovirus type 2 vaccine related to subclinical infection. Veterinary Medicine and Science, 9(6), 2703–2710. https://doi.org/10.1002/vms3.1256
Park Y., Min K., Kim N. H., Kim J. Hwan, Park, M., Kang H., et al. (2021). Porcine circovirus 2 capsid protein produced in N. benthamiana forms virus-like particles that elicit production of virus-neutralizing antibodies in guinea pigs. New Biotechnology, 63, 29–36. https://doi.org/10.1016/j.nbt.2021.02.005
Phan H. T., Ho T. T., Chu H. H., Vu T. H., Gresch U., & Conrad U. (2017). Neutralizing immune responses induced by oligomeric H5N1-hemagglutinins from plants. Veterinary Research, 48(1), 53. https://doi.org/10.1186/s13567-017-0458-x
Phan T. G., Giannitti F., Rossow S., Marthaler D., Knutson, T., Li, L., et al. (2016). Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation. Virology Journal, 13(1), 1–8. https://doi.org/10.1186/s12985-016-0642-z
Rybicki E. P. (2009). Plant-produced vaccines: promise and reality. Drug Discovery Today, 14(1–2), 16–24. https://doi.org/10.1016/j.drudis.2008.10.002
Strasser R. (2016). Plant protein glycosylation. Glycobiology, 26(9), 926–939. https://doi.org/10.1093/glycob/cww023
Tran T. K., Nguyen T. T. T., Vu H. L. X., & Dinh P. X. (2021). Identification of porcine circovirus type 2 (PCV2), type 3 (PCV3) and porcine parvovirus (PPV) in swine by multiplex PCR test. The Journal of Agriculture and Development 20(3), 11-17. https://doi.org/10.52997/jad.2.03.2021
Visuthsak W., Woonwong Y., Thanantong N., Poolperm P., Boonsoongnern A., Ratanavanichrojn et al. (2021). PCV3 in Thailand: Molecular epidemiology and relationship with PCV2. Transboundary and Emerging Diseases, 68(6), 2980–2989. https://doi.org/10.1111/tbed.14294
Weldon W. C., Wang B.-Z., Martin M. P., Koutsonanos D. G., Skountzou I., & Compans R. W. (2010). Enhanced immunogenicity of stabilized trimeric soluble influenza hemagglutinin. PLoS ONE, 5(9), e12466. https://doi.org/10.1371/journal.pone.0012466
Wen S., Sun W., Li Z., Zhuang X., Zhao G., Xie C., et al. (2018). The detection of porcine circovirus 3 in Guangxi, China. Transboundary and Emerging Diseases, 65(1), 27–31. https://doi.org/10.1111/tbed.12754
Yuzhakov A. G., Raev S. A., Alekseev K. P., Grebennikova T. V., Verkhovsky O. A., Zaberezhny A. D., et al. (2018). First detection and full genome sequence of porcine circovirus type 3 in Russia. Virus Genes, 54(4), 608–611. https://doi.org/10.1007/s11262-018-1582-z
Zhang S., Wang D., JiangY., Li Z., Zou Y., Li M., et al. (2019). Development and application of baculovirus-expressed capsid protein-based indirect ELISA for detection of porcine circovirus 3 IgG antibodies. BMC Veterinary Research, 15(1), 79. https://doi.org/10.1186/s12917-019-1810-3
Downloads
Published
How to Cite
Issue
Section
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers VAST02.03/23-24
