Enhancement of polyhydroxyalkanoate production by Priestia aryabhattai ML113 isolated from Me Linh, Hanoi
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-23378Keywords:
Biopolymer optimization, Box–Behnken design (BBD), carbon-to-nitrogen ratio, polyhydroxyalkanoate (PHA), Priestia aryabhattai ML113, response surface methodology (RSM), sustainable bioprocess.Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polyesters that microorganisms naturally accumulate as intracellular carbon and energy reserves. They are considered environmentally friendly alternatives to petroleum-based plastics. This study evaluated Priestia aryabhattai ML113 for its ability to synthesize PHA and employed a two-step optimization strategy to enhance polymer yield. In the preliminary one-factor-at-a-time (OFAT) experiments, temperature, fermentation time, and the carbon-to-nitrogen (C/N) ratio were identified as the most influential factors, yielding a maximum PHA concentration of 1.16 g L⁻¹ under conditions of 35°C, 72 h, and a C/N ratio of 28:1. Subsequently, response surface methodology (RSM) using a Box–Behnken design (BBD) was applied to analyze factor interactions and quadratic effects. The developed regression model predicted an optimal PHA concentration of 1.3014 g L⁻¹, achieved under 34°C, 72 h, and a C/N ratio of 30:1. Experimental validation confirmed a comparable yield of 1.4473 ± 0.03 g L⁻¹, corresponding to a 1.25-fold improvement compared with the OFAT result. The strong correlation between predicted and observed values confirms the model’s reliability. It highlights the effectiveness of integrating OFAT screening with RSM optimization as a scalable strategy for improving PHA biosynthesis. This study represents the first systematic optimization of PHA production by P. aryabhattai ML113, providing a methodological framework for exploiting this strain and low-cost carbon sources toward sustainable bioplastic production.
Downloads
References
Ahn J., Jho E. H., & Nam K. (2015). Effect of carbon-to-nitrogen ratio on polyhydroxyalkanoates (PHA) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates. Environmental Engineering Research, 20(3), 246–253. https://doi.org/10.4491/eer.2015.055
Cal A. J., Chan V. J., Luo W. K., Lee C. C. (2025). Polyhydroxyalkanoate production in Priestia megaterium strains from glycerol feedstock. PLoS One, 20(4), e0322838. https://doi.org/10.1371/journal.pone.0322838
Chen G.-Q. (2010). Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. In G.-Q. Chen (Ed.), Plastics from bacteria: Natural functions and applications (pp. 17–37). Springer. https://doi.org/10.1007/978-3-642-03287-5_2
Dash A., Mohanty S., & Samantaray D. P. (2019). Effect of carbon/nitrogen ratio on polyhydroxyalkanoates production by Bacillus species under submerged fermentation. Journal of Environmental Biology, 41, 118–124. https://doi.org/10.22438/jeb/41/1/MRN-1138
Gupta R. S., Patel S., Saini N., & Chen S. (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses. International Journal of Systematic and Evolutionary Microbiology, 70(11), 5753–5798. https://doi.org/10.1099/ijsem.0.004475
Hahn S. K., Chang Y. K., Kim B. S., Chang H. N. (1994). Optimization of microbial poly(3-hydroxybutyrate) recover using dispersions of sodium hypochlorite solution and chloroform. Biotechnology and Bioengineering, 44(2), 256-261. https://doi.org/10.1002/bit.260440215
Johnson K., Kleerebezem R., & van Loosdrecht M. C. (2010). Influence of the C/N ratio on the performance of polyhydroxybutyrate (PHB)-producing sequencing batch reactors at short SRTs. Water Research, 44(7), 2141–2152. https://doi.org/10.1016/j.watres.2009.12.031
Koller M., Maršálek L., de Sousa Dias M. M., & Braunegg G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 37, 24–38. https://doi.org/10.1016/j.nbt.2016.05.001
Kourmentza C., Plácido J., Venetsaneas N., Burniol-Figols A., Varrone C., Gavala H. N., et al. (2017). Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering, 4(2), 55. https://doi.org/10.3390/bioengineering4020055
Kumar M., Singh N., Kumar R., Mishra V., & Singh S. (2025). Valorization of wood waste for enhanced polyhydroxybutyrate production by Klebsiella sp. MK3. Scientific Reports, 15, Article 18205. https://doi.org/10.1038/s41598-025-01305-7
Morya R., Tiwari R., Tiwari S., & Gaur R. (2021). Proteogenomic and process optimization study for biovalorization of industrial lignin into polyhydroxyalkanoate. Bioresource Technology Reports, 8, 100333. https://doi.org/10.1016/j.biteb.2019.100333
Nguyen K. T., Lai T. H. N., Phan T. T. M., Hoa T. M. T., Tran T. T., Nguyen Q. V., et al. (2025). Isolation and characterization of polyhydroxyalkanoate producing bacteria from legume rhizosphere soils in Me Linh commune, Hanoi. Vietnam Journal of Biotechnology, 23(3), 415–428. https://doi.org/10.15625/vjbt-23144
Pillai A. B., Kumar A. J., Thulasi K., Kumarapillai H. (2017). Evaluation of short-chain-length polyhydroxyalkanoate accum- ulation in Bacillus aryabhattai. Brazilian Journal of Microbiology, 48(3), 451-460. https://doi.org/10.1016/j.bjm.2017.01.005
Pillai A. B., Kumar A. J., Kumarapillai H. (2020). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in Bacillus aryabhattai and cytotoxicity evaluation of PHBV/poly (ethylene glycol) blends. 3 Biotech, 10(2), 32. https://doi.org/10.1007/s13205-019-2017-9
Patil T. D., Ghosh S., Agarwal A., Patel S. K. S., Tripathi A. D., Mahato D. K., et al. (2024). Production, optimization, scale-up and characterization of polyhydroxyalkanoates copolymers utilizing dairy processing waste. Scientific Reports, 14(1), 1620. https://doi.org/10.1038/s41598-024-52098-0
Pham T. H., Bach T. M. H., Nguyen T. L., La, T. H., & Nguyen T. D. (2022). Response surface methodology optimization of polyhydroxyalkanoate by recombinant Bacillus megaterium pPSPHAR1/1 strain using fish processing waste. Vietnam Journal of Science and Technology, 60(3), 371–382. https://doi.org/10.15625/2525-2518/16270
Pillai A. B., Kumar A. J., Kumarapillai H. (2020). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in Bacillus aryabhattai and cytotoxicity evaluation of PHBV/poly (ethylene glycol) blends. 3 Biotech, 32. https://doi.org/10.1007/s13205-019-2017-9
Reis M. A. M., Serafim L. S., Lemos P. C., Ramos A. M., Aguiar F. R., & Van Loosdrecht M. C. M. (2011). Production of polyhydroxyalkanoates by mixed microbial cultures. Biotechnology Advances, 29(6), 715–725. https://doi.org/10.1016/j.biotechadv.2011.05.015
Romero Sanchez M. T., Martínez Tolibia S. E., García Barrera L. J., Sierra Martínez P., Gracida Rodríguez J. N., et al. (2025). Carbon:Nitrogen ratio affects differentially the poly-β-hydroxybutyrate synthesis in Bacillus thuringiensis isolates from México. Polymers, 17(14), 1978. https://doi.org/10.3390/polym17141978
Trego A., Palmeiro-Sánchez T., Graham A., Ijaz, U. Z., & O’Flaherty V. (2024). First evidence for temperature’s influence on the enrichment, assembly, and activity of polyhydroxyalkanoate-synthesizing mixed microbial communities. Frontiers in Systems Biology, 4, 1375472. https://doi.org/10.3389/fsysb.2024.1375472
Downloads
Published
How to Cite
Issue
Section
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers TĐNSH 0.07/22-24
