Association study of SLC22A12 rs475688 polymorphism with gout in a Vietnamese population

Ngan Tra Tran, Huu Dinh Tran, Thi Thanh Huong Le, Thuy Duong Nguyen
Author affiliations

Authors

  • Ngan Tra Tran \(^1\) Center for DNA Identification, Institute of Biology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Hanoi, Vietnam
  • Huu Dinh Tran \(^1\) Center for DNA Identification, Institute of Biology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Hanoi, Vietnam
  • Thi Thanh Huong Le \(^2\) Phuong Dong General Hospital, 9 Pho Vien street, Dong Ngac, Hanoi, Vietnam
  • Thuy Duong Nguyen \(^1\) Center for DNA Identification, Institute of Biology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/vjbt-23276

Keywords:

Gout, PCR-RFLP, rs475688, SLC22A12, Vietnamese population.

Abstract

Gout is a common inflammatory arthritis caused by the deposition of monosodium urate crystals. Several studies have reported that genetic variants in SLC22A12 were associated with gout susceptibility. However, the obtained results vary indifferent populations. This study aimed to assess the relationship between SLC22A12 rs475688 and gout in a Vietnamese population. Genomic DNA was extracted from peripheral blood samples of 470 participants, including 157 gout patients and 313 healthy controls. Genotyping of SLC22A12 rs475688 was conducted using the PCR-RFLP method. Statistical analysis revealed that the genotype distribution of rs475688 followed Hardy-Weinberg Equilibrium (p>0.05). The C and T allele frequencies were 0.659 and 0.341, respectively. However, there was no significant association between rs475688 and gout in four models (additive, dominant, recessive, and allele (p>0.05). This study provides additional insights into the association between single-nucleotide polymorphisms (SNPs) and gout in the Vietnamese population.

Downloads

Download data is not yet available.

References

Akashi N., Kuwabara M., Matoba T., Kohro T., Oba Y., Kabutoya T., et al. (2022). Hyperuricemia predicts increased cardiovascular events in patients with chronic coronary syndrome after percutaneous coronary intervention: A nationwide cohort study from Japan. Frontiers in Cardiovascular Medicine, 9, 1062894. https://doi.org/10.3389/fcvm.2022.1062894

Anzai N., Miyazaki H., Noshiro R., Khamdang S., Chairoungdua A., Shin H.-J., et al. (2004). The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. The Journal of Biological Chemistry, 279(44), 45942-45950. https://doi.org/10.1074/jbc.M406724200

Cho S. K., Kim S., Chung J.-Y., & Jee S. H. (2015). Discovery of URAT1 SNPs and association between serum uric acid levels and URAT1. BMJ Open, 5(11), e009360. https://doi.org/10.1136/bmjopen-2015-009360

Choi H. K., Mount D. B., Reginato A. M., American College of, P., & American Physiological, S. (2005). Pathogenesis of gout. Annals of Internal Medicine, 143(7), 499-516. https://doi.org/10.7326/0003-4819-143-7-200510040-00009

Cross M., Ong K. L., Culbreth G. T., Steinmetz J. D., Cousin, E., Lenox, H., et al. (2024). Global, regional, and national burden of gout, 1990–2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. The Lancet Rheumatology, 6(8), e507-e517. https://doi.org/10.1016/S2665-9913(24)00117-6

Dalbeth N., Gosling A. L., Gaffo A., & Abhishek A. (2021). Gout. The Lancet, 397(10287), 1843-1855. https://doi.org/10.1016/S0140-6736(21)00569-9

Dehghan A., Köttgen A., Yang Q., Hwang S.-J., Kao W. L., Rivadeneira F., et al. (2008). Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet (London, England), 372(9654), 1953-1961. https://doi.org/10.1016/S0140-6736(08)61343-4

Duong N. T., Ngoc N. T., Thang N. T. M., Phuong, B. T. H., Nga N. T., Tinh N. D., et al. (2019). Polymorphisms of ABCG2 and SLC22A12 genes associated with gout risk in Vietnamese population. Medicina (Kaunas), 55(1). https://doi.org/10.3390/medicina55010008

Enomoto A., & Endou H. (2005). Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clinical and Experimental Nephrology, 9(3), 195-205. https://doi.org/10.1007/s10157-005-0368-5

Enomoto A., Kimura H., Chairoungdua A., Shigeta Y., Jutabha P., Ho Cha S., et al. (2002). Molecular identification of a renal urate–anion exchanger that regulates blood urate levels. Nature, 417(6887), 447-452. https://doi.org/10.1038/nature742

Flynn T. J., Phipps-Green A., Hollis-Moffatt J. E., Merriman M. E., Topless R., Montgomery G., et al. (2013). Association analysis of the SLC22A11 (organic anion transporter 4) and SLC22A12 (urate transporter 1) urate transporter locus with gout in New Zealand case-control sample sets reveals multiple ancestral-specific effects. Arthritis Research & Therapy, 15(6), R220. https://doi.org/10.1186/ar4417

Fujii W., Yamazaki O., Hirohama D., Kaseda K., Kuribayashi-Okuma E., Tsuji M., et al. (2025). Gene-environment interaction modifies the association between hyperinsulinemia and serum urate levels through SLC22A12. The Journal of Clinical Investigation, 135(10), e186633. https://doi.org/10.1172/JCI186633

Graessler J., Graessler A., Unger S., Kopprasch S., Tausche A.-K., Kuhlisch E., et al. (2006). Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis and Rheumatism, 54(1), 292-300. https://doi.org/10.1002/art.21499

Hosoyamada M., Ichida K., Enomoto A., Hosoya T., & Endou H. (2004). Function and localization of urate transporter 1 in mouse kidney. Journal of the American Society of Nephrology, 15(2), 261. https://doi.org/10.1097/01.ASN.0000107560.80107.19

Hosoyamada M. Y. T. T. S., & and Saito H. (2010). The effect of testosterone upon the urate reabsorptive transport system in mouse kidney. Nucleosides, Nucleotides & Nucleic Acids, 29(7), 574-579. https://doi.org/10.1080/15257770.2010.494651

Hung P. Q., Canh N. X., & Duong N. T. (2022). Study on association between SLC2A9 rs3733591 and Gout susceptibility in 481 Vietnamese individuals. Vietnam Journal of Science, Technology and Engineering, 64(1), 39-42. https://doi.org/10.31276/VJSTE.64(1).39-42

Johnson R. J., Titte S., Cade J. R., Rideout B. A., & Oliver W. J. (2005). Uric acid, evolution and primitive cultures. Seminars in Nephrology, 25(1), 3-8. https://doi.org/10.1016/j.semnephrol.2004.09.002

Kolz M., Johnson T., Sanna S., Teumer A., Vitart V., Perola M., et al. (2009). Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLOS Genetics, 5(6), e1000504. https://doi.org/10.1371/journal.pgen.1000504

Köttgen A., Albrecht E., Teumer A., Vitart V., Krumsiek J., Hundertmark C., et al. (2013). Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nature Genetics, 45(2), 145-154. https://doi.org/10.1038/ng.2500

Kuo T.-M., Huang C.-M., Tu H.-P., Min-Shan Ko A., Wang S.-J., Lee C.-P., et al. (2017). URAT1 inhibition by ALPK1 is associated with uric acid homeostasis. Rheumatology (Oxford, England), 56(4), 654-659. https://doi.org/10.1093/rheumatology/kew463

Li C., Han L., Levin A. M., Song H., Yan S., Wang Y., et al. (2010). Multiple single nucleotide polymorphisms in the human urate transporter 1 (hURAT1) gene are associated with hyperuricaemia in Han Chinese. Journal of Medical Genetics, 47(3), 204-210. https://doi.org/10.1136/jmg.2009.068619

Li C., Li Z., Liu S., Wang C., Han L., Cui L., et al. (2015). Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese. Nature Communications, 6, 7041. https://doi.org/10.1038/ncomms8041

Li C., Yu Q., Han L., Wang C., Chu N., & Liu S. (2014). The hURAT1 rs559946 polymorphism and the incidence of gout in Han Chinese men. Scandinavian Journal of Rheumatology, 43(1), 35-42. https://doi.org/10.3109/03009742.2013.808375

Li M., Li Q., Li C.-G., Guo M., Xu J.-M., Tang Y.-Y., et al. (2015). Genetic polymorphisms in the PDZK1 gene and susceptibility to gout in male Han Chinese: a case-control study. International Journal of Clinical and Experimental Medicine, 8(8), 13911-13918. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613032/

Matsuo H., Yamamoto K., Nakaoka H., Nakayama A., Sakiyama M., Chiba T., et al. (2016). Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Annals of the Rheumatic Diseases, 75(4), 652-659. https://doi.org/10.1136/annrheumdis-2014-206191

Minh Hoa T. T., Darmawan J., Chen S. L., Van Hung N., Thi Nhi C., & Ngoc An T. (2003). Prevalence of the rheumatic diseases in urban Vietnam: a WHO-ILAR COPCORD study. The Journal of Rheumatology, 30(10), 2252-2256. http://www.ncbi.nlm.nih.gov/pubmed/14528525

Mori K., Ogawa Y., Ebihara K., Aoki T., Tamura N., Sugawara A., et al. (1997). Kidney-specific expression of a novel mouse organic cation transporter-like protein. FEBS letters, 417(3), 371-374. https://doi.org/10.1016/s0014-5793(97)01325-2

Nakayama A., Nakaoka H., Yamamoto K., Sakiyama M., Shaukat A., Toyoda Y., et al. (2017). GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Annals of the Rheumatic Diseases, 76(5), 869-877. https://doi.org/10.1136/annrheumdis-2016-209632

Nath S. D., Voruganti V. S., Arar N. H., Thameem F., Lopez-Alvarenga J. C., Bauer R., et al. (2007). Genome scan for determinants of serum uric acid variability. Journal of the American Society of Nephrology: JASN, 18(12), 3156-3163. https://doi.org/10.1681/ASN.2007040426

Pavelcova, K., Bohata, J., Pavlikova, M., Bubenikova, E., Pavelka, K., & Stiburkova, B. (2020). Evaluation of the influence of genetic variants of SLC2A9 (GLUT9) and SLC22A12 (URAT1) on the development of hyperuricemia and gout. Journal of Clinical Medicine, 9(8), 2510. https://doi.org/10.3390/jcm9082510

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Roman Y. M. (2023). The role of uric acid in human health: Insights from the uricase gene. Journal of Personalized Medicine, 13(9), 1409. https://doi.org/10.3390/jpm13091409

Rosewarne E., Hoek A. C., Palu A., Trieu K., Taylor C., Ha D. T. P., et al. (2022). Advancing Health Research Impact through a Systemic Multi-Sectoral Approach: A Protocol for Introducing Reduced-Sodium Salts and Salty Condiments in Vietnam. International journal of environmental research and public health, 19(19). https://doi.org/10.3390/ijerph191912937

Sato M., Wakayama T., Mamada H., Shirasaka Y., Nakanishi T., & Tamai I. (2011). Identification and functional characterization of uric acid transporter Urat1 (Slc22a12) in rats. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1808(6), 1441-1447. https://doi.org/10.1016/j.bbamem.2010.11.002

Shima Y., Teruya K., & Ohta H. (2006). Association between intronic SNP in urate-anion exchanger gene, SLC22A12, and serum uric acid levels in Japanese. Life Sciences, 79(23), 2234-2237. https://doi.org/10.1016/j.lfs.2006.07.030

Takiue Y., Hosoyamada M., Kimura M., & Saito H. (2011). The effect of female hormones upon urate transport systems in the mouse kidney. Nucleosides, Nucleotides & Nucleic Acids, 30(2), 113-119. https://doi.org/10.1080/15257770.2010.551645

Tin A., Woodward O. M., Kao W. H. L., Liu C.-T., Lu X., Nalls M. A., et al. (2011). Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Human Molecular Genetics, 20(20), 4056-4068. https://doi.org/10.1093/hmg/ddr307

Tu H.-P., Chen C.-J., Lee C.-H., Tovosia S., Ko A. M.-S., Wang S.-J., et al. (2010). The SLC22A12 gene is associated with gout in Han Chinese and Solomon Islanders. Annals of the Rheumatic Diseases, 69(6), 1252-1254. https://doi.org/10.1136/ard.2009.114504

Tu H.-P., Chung C.-M., Min-Shan Ko A., Lee S.-S., Lai H.-M., Lee C.-H., et al. (2016). Additive composite ABCG2, SLC2A9 and SLC22A12 scores of high-risk alleles with alcohol use modulate gout risk. Journal of Human Genetics, 61(9), 803-810. https://doi.org/10.1038/jhg.2016.57

Tu H.-P., Min-Shan Ko A., Lee S.-S., Lee C.-P., Kuo T.-M., Huang C.-M., et al. (2018). Variants of ALPK1 with ABCG2, SLC2A9, and SLC22A12 increased the positive predictive value for gout. Journal of Human Genetics, 63(1), 63-70. https://doi.org/10.1038/s10038-017-0368-9

Wang Z., Cui T., Ci X., Zhao F., Sun Y., Li Y., et al. (2019). The effect of polymorphism of uric acid transporters on uric acid transport. Journal of Nephrology, 32(2), 177-187. https://doi.org/10.1007/s40620-018-0546-7

Wilk J. B., Djousse L., Borecki I., Atwood L. D., Hunt S. C., Rich S. S., et al. (2000). Segregation analysis of serum uric acid in the NHLBI Family Heart Study. Human Genetics, 106(3), 355-359. https://doi.org/10.1007/s004390000243

Wu L., Fan Y., Wang Y., Li Z., Mao D., & Zhuang W. (2021). The impact of an URAT1 polymorphism on the losartan treatment of hypertension and hyperuricemia. Journal of Clinical Laboratory Analysis, 35(10), e23949. https://doi.org/10.1002/jcla.23949

Yang Q., Guo C.-Y., Cupples L. A., Levy D., Wilson P. W. F., & Fox C. S. (2005). Genome-wide search for genes affecting serum uric acid levels: the framingham heart study. Metabolism: Clinical and Experimental, 54(11), 1435-1441. https://doi.org/10.1016/j.metabol.2005.05.007

Yang Y., Zhou W., Wang Y., & Zhou R. (2019). Gender-specific association between uric acid level and chronic kidney disease in the elderly health checkup population in China. Renal Failure, 41(1), 197-203. https://doi.org/10.1080/0886022X.2019.1591994

Yee S. W., & Giacomini K. M. (2022). Emerging roles of the human solute carrier 22 family. Drug Metabolism and Disposition, 50(9), 1193-1210. https://doi.org/10.1124/dmd.121.000702

Zhen Q., Keliang W., Hongtao Q., & Xiaosheng L. (2022). Genetic association between SLC22A12 variants and susceptibility to hyperuricemia: A meta-analysis. Genetic Testing and Molecular Biomarkers, 26(2), 81-95. https://doi.org/10.1089/gtmb.2021.0175

Zhou Z.-W., Cui L.-L., Han L., Wang C., Song Z.-J., Shen J.-W., et al. (2015). Polymorphisms in GCKR, SLC17A1 and SLC22A12 were associated with phenotype gout in Han Chinese males: a case–control study. BMC Medical Genetics, 16, 66. https://doi.org/10.1186/s12881-015-0208-8

Zou Y., Du J., Zhu Y., Xie X., Chen J., & Ling G. (2018). Associations between the SLC22A12 gene and gout susceptibility: a meta-analysis. Clinical and Experimental Rheumatology, 36(3), 442-447. http://www.ncbi.nlm.nih.gov/pubmed/29352852

Downloads

Published

30-12-2025

How to Cite

Tran, N. T., Tran, H. D., Le, T. T. H., & Nguyen, T. D. (2025). Association study of SLC22A12 rs475688 polymorphism with gout in a Vietnamese population. Vietnam Journal of Biotechnology, 23(4), 459–468. https://doi.org/10.15625/vjbt-23276

Issue

Section

Articles

Funding data

Similar Articles

<< < 12 13 14 15 16 17 

You may also start an advanced similarity search for this article.