Evaluation of the antioxidant activity of coral mucus isolated from Porites lobata in vitro

Author affiliations

Authors

  • Thi Phuong Thao Nguyen \(^1\) Institute of Biological and Food Technology, Hanoi Open University, B101 Nguyen Hien, Bach Mai, Hanoi, Vietnam \(^3\) Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Hanoi, Vietnam https://orcid.org/0009-0008-8451-0812
  • Thi Thu Thuy Ta \(^1\) Institute of Biological and Food Technology, Hanoi Open University, B101 Nguyen Hien, Bach Mai, Hanoi, Vietnam
  • Van Ngoc Bui \(^2\) Institute of Biology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Hanoi, Vietnam
    \(^3\) Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Hanoi, Vietnam
    https://orcid.org/0000-0002-4659-7338

DOI:

https://doi.org/10.15625/vjbt-23121

Keywords:

Antioxidant activity, coral mucus, healthy and bleached coral, Porites lobata, diseases.

Abstract

Marine-derived natural products have attracted much interest from scientists (chemists and pharmacologists), since many of their potential bioactivities are still unexplored. Among marine natural products discovered to date, 56% are anticancer, 13% are antibacterial, 5% are antifungal, and 3% are antiviral compounds. These compounds come from green algae (1%), red algae (4%), brown algae (5%), sponges (31%), corals (24%), and marine microorganisms (15%). Coral reefs, especially Porites lobata, secrete surface mucus layers (SMLs) that serve as essential barriers in host defense and microbial regulation. However, environmental stressors such as bleaching may alter the biochemical composition of this mucus, compromising its biological functions. This study aimed to compare the antioxidant properties of mucus obtained from healthy and bleached P. lobata corals to assess the impact of bleaching on their natural protective capabilities. The DPPH assay and flow cytometry with dihydroethidium (DHE) staining were used to evaluate the free radical scavenging activity and antioxidant capacity of coral surface mucus layer samples. The antioxidant activity of healthy coral mucus was significantly higher than that of bleached mucus, with a 2-fold increase at 1/5 and 1/10 dilutions, and nearly a 2.8-fold increase at 1/20 dilution. The results indicate that mucus from healthy corals exhibited significantly higher antioxidant activity than that from bleached corals. DPPH analysis showed stronger radical scavenging ability in healthy mucus extracts, while flow cytometry demonstrated a marked reduction in reactive oxygen species (ROS) accumulation in treated HCT116 cells compared to both bleached mucus and control groups. These findings suggest a decline in the coral’s natural defense mechanisms post-bleaching. The mucus from healthy corals has the ability to reduce the accumulation of intracellular ROS in HCT116 cells, indicating its potential to against oxidative stress-related diseases. The robust antioxidant activity of healthy coral mucus highlights its potential as a source of novel marine-derived antioxidants. This study supports further investigation into the bioactive compounds from the surface mucus layer of healthy Porites spp. corals for potential therapeutic applications against oxidative stress-related diseases.

Downloads

Download data is not yet available.

References

Abdelfattah M. M., El-Hammady M. A., Mostafa A., Kutkat O., Abo Shama N. M., Nafie M. S., et al. (2024). Identification of potential antiviral compounds from Egyptian Red Sea soft corals against Middle East respiratory syndrome coronavirus. Natural Product Research, 38(19), 3353-3359. http://doi.org/10.1080/14786419.2023.2247535

Al-Zereini W., Fotso Fondja Yao C. B., Laatsch H., & Anke H. (2010). Aqabamycins A-G: novel nitro maleimides from a marine Vibrio species. I. Taxonomy, fermentation, isolation and biological activities. The Journal of Antibiotics, 63(6), 297-301. http://doi.org/10.1038/ja.2010.34

Brown B. E., & Bythell J. C. (2005). Perspectives on mucus secretion in reef corals. Marine Ecology Progress Series, 296, 291-309. http://doi.org/10.3354/meps296291

Bui V. N., Nguyen T. P. T., Nguyen H. D., Phi Q. T., Nguyen T. N., & Chu H. H. (2024). Bioactivity responses to changes in mucus-associated bacterial composition between healthy and bleached Porites lobata corals. Journal of Invertebrate Pathology, 206, 108164. http://doi.org/10.1016/j.jip.2024.108164

Carlos C., Torres T. T., & Ottoboni L. M. (2013). Bacterial communities and species-specific associations with the mucus of Brazilian coral species. Scientific Reports, 3, 1624. http://doi.org/10.1038/srep01624

Couttolenc A., Espinoza C., Fernández J. J., Norte M., Plata G. B., Padrón J. M., et al. (2016). Antiproliferative effect of extract from endophytic fungus Curvularia trifolii isolated from the "Veracruz Reef System" in Mexico. Pharmaceutical Biology, 54(8), 1392-1397. http://doi.org/10.3109/13880209.2015.1081254

Chandimali N., Bak S. G., Park E. H., Lim H. J., Won Y. S., Kim E. K., et al. (2025). Free radicals and their impact on health and antioxidant defenses: a review. Cell death discovery, 11(1), 19. http://doi.org/10.1038/s41420-024-02278-8

Chang Y. T., Wu C. Y., Tang J. Y., Huang C. Y., Liaw C. C., Wu S. H., et al. (2017). Sinularin induces oxidative stress-mediated G2/M arrest and apoptosis in oral cancer cells. Environmental Toxicology, 32(9), 2124-2132. http://doi.org/10.1002/tox.22425

Chao C. H., Chen Y. J., Huang C. Y., Chang F. R., Dai C. F., & Sheu J. H. (2022). Cembranolides and Related Constituents from the Soft Coral Sarcophyton cinereum. Molecules, 27(6), 1760. http://doi.org/10.3390/molecules27061760

Cheng K., Li X., Tong M., Jong M. C., Cai Z., Zheng, H., et al. (2023). Integrated metagenomic and metaproteomic analyses reveal bacterial micro-ecological mechanisms in coral bleaching. mSystems, 8(6), e00505- 23. http://doi.org/10.1128/msystems.00505-23

Chung H. M., Hong P. H., Su J. H., Hwang T. L., Lu M. C., Fang L. S., et al. (2012). Bioactive compounds from a gorgonian coral Echinomuricea sp. (Plexauridae). Marine Drugs, 10(5), 1169-1179. http://doi.org/10.3390/md10051169

Downs C. A., Fauth J. E., Halas J. C., Dustan P., Bemiss J., & Woodley C. M. (2002). Oxidative stress and seasonal coral bleaching. Free Radical Biology and Medicine, 33(4), 533-543. http://doi.org/10.1016/s0891-5849(02)00907-3

Elkhateeb A., El-Beih A. A., Gamal-Eldeen A. M., Alhammady M. A., Ohta S., Paré P. W., et al. (2014). New terpenes from the Egyptian soft coral Sarcophyton ehrenbergi. Marine Drugs, 12(4), 1977-1986. http://doi.org/10.3390/md12041977

Farag M. A., Meyer A., & Ali S. E. (2021). Bleaching effect in Sarcophyton spp. soft corals-is there a correlation to their diterpene content? Environmental Science and Pollution Research, 28(20), 25594-25602. http://doi.org/10.1007/s11356-021-12483-y

Gajigan A. P., Diaz L. A., & Conaco C. (2017). Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. MicrobiologyOpen, 6(4), e00478. http://doi.org/10.1002/mbo3.478

Hadaidi G., Röthig T., Yum L. K., Ziegler M., Arif C., Roder C., et al. (2017). Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas. Scientific Reports, 7, 45362. http://doi.org/10.1038/srep45362

Hou X. M., Xu R. F., Gu Y. C., Wang C. Y., & Shao C. L. (2015). Biological and chemical diversity of coral-derived microorganisms. Current Medicinal Chemistry, 22(32), 3707-3762. http://doi.org/10.2174/0929867322666151006093755

Huang C. Y., Chang C. W., Tseng Y. J., Lee J., Sung P. J., Su J. H., et al. (2016). Bioactive Steroids from the Formosan Soft Coral Umbellulifera petasites. Marine Drugs, 14(10), 180. http://doi.org/10.3390/md14100180

Juan C. A., Pérez de la Lastra J. M., Plou F. J., & Pérez-Lebeña E. (2021). The chemistry of Reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Sciences, 22(9), 4642. http://doi.org/10.3390/ijms22094642

Kedare S. B., & Singh R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412-422. http://doi.org/10.1007/s13197-011-0251-1

Kuang W., Li J., Zhang S., & Long L. (2015). Diversity and distribution of Actinobacteria associated with reef coral Porites lutea. Frontiers in Microbiology, 6, 1094. http://doi.org/10.3389/fmicb.2015.01094

Kumar R., & Gullapalli R. R. (2024). High throughput screening assessment of reactive oxygen species (ROS) generation using dihydroethidium (DHE) fluorescence dye. Journal of Visualized Experiments, (203), e66238. http://doi.org/10.3791/66238

Lin Y. C., Wang S. S., Chen C. H., Kuo Y. H., & Shen Y. C. (2014). Cespitulones A and B, cytotoxic diterpenoids of a new structure class from the soft coral Cespitularia taeniata. Marine Drugs, 12(6), 3477-3486. http://doi.org/10.3390/md12063477

Magnani F., & Mattevi A. (2019). Structure and mechanisms of ROS generation by NADPH oxidases. Current Opinion in Structural Biology, 59, 91-97. http://doi.org/10.1016/j.sbi.2019.03.001

Mahmoud H. M., & Kalendar A. A. (2016). Coral-associated actinobacteria: diversity, abundance, and biotechnological potentials. Frontiers in Microbiology, 7, 204. http://doi.org/10.3389/fmicb.2016.00204

Palmer C. V., Bythell J. C., & Willis B. L. (2010). Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals. The FASEB Journal, 24(6), 1935-1946. http://doi.org/10.1096/fj.09-152447

Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., et al. (2017). Oxidative stress: harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. http://doi.org/10.1155/2017/8416763

Roder C., Arif C., Daniels C., Weil E., & Voolstra C. R. (2014). Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome. Molecular Ecology, 23(4), 965-974. http://doi.org/10.1111/mec.12638

Rosic N. N., Pernice M., Dove S., Dunn S., & Hoegh-Guldberg O. (2011). Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching. Cell Stress and Chaperones, 16(1), 69-80. http://doi.org/10.1007/s12192-010-0222-x

Sang V. T., Dat T. T. H., Vinh L. B., Cuong L. C. V., Oanh P. T. T., Ha H., et al. (2019). Coral and coral-associated microorganisms: A prolific source of potential bioactive natural products. Marine Drugs, 17(8), 468. http://doi.org/10.3390/md17080468

Shi T., Qi, J., Shao C. L., Zhao D. L., Hou X. M., & Wang C. Y. (2017). Bioactive diphenyl ethers and isocoumarin derivatives from a Gorgonian-derived fungus Phoma sp. (TA07-1). Marine Drugs, 15(6), 146. http://doi.org/10.3390/md15060146

Tseng W. R., Huang C. Y., Tsai Y. Y., Lin Y. S., Hwang T. L., Su J. H., et al. (2016). New cytotoxic and anti-inflammatory steroids from the soft coral Klyxum flaccidum. Bioorganic & Medicinal Chemistry Letters, 26(14), 3253-3257. http://doi.org/10.1016/j.bmcl.2016.05.060

Thao N. T. P., Ngoc V. M., Van Tra P., & Van B. (2023). Metagenomic characterization of archaeal and bacterial communities associated with coral, sediment, and seawater in a coral reef ecosystem of Phu Quoc island, Vietnam. Vietnam Journal of Biotechnology, 21(4), 745-757. https://doi.org/10.15625/1811-4989/20283

Vilas Bhagwat, P., Ravindran, C., & Irudayarajan, L. (2023). Characterization of the defense properties of healthy and diseased coral mucus. Journal of Invertebrate Pathology, 201, 108001. http://doi.org/10.1016/j.jip.2023.108001

Wei W. C., Sung P. J., Duh C. Y., Chen B. W., Sheu J. H., & Yang N. S. (2013). Anti-inflammatory activities of natural products isolated from soft corals of Taiwan between 2008 and 2012. Marine Drugs, 11(10), 4083-4126. http://doi.org/10.3390/md11104083

Weis, V. M. (2008). Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. Journal of Experimental Biology, 211(Pt 19), 3059-3066. http://doi.org/10.1242/jeb.009597

Williams A., Chiles E. N., Conetta D., Pathmanathan J. S., Cleves P. A., Putnam H. M., et al. (2021). Metabolomic shifts associated with heat stress in coral holobionts. Science Advances, 7(1), eabd4210. http://doi.org/10.1126/sciadv.abd4210

Wilson B., Aeby G. S., Work T. M., & Bourne D. G. (2012). Bacterial communities associated with healthy and Acropora white syndrome-affected corals from American Samoa. FEMS Microbiology Ecology, 80(2), 509-520. http://doi.org/10.1111/j.1574-6941.2012.01319.x

Yang C. W., Chien T. M., Yen C. H., Wu W. J., Sheu J. H., & Chang H. W. (2022). Antibladder cancer effects of excavatolide C by inducing oxidative stress, apoptosis, and DNA damage in vitro. Pharmaceuticals (Basel), 15(8), 917. http://doi.org/10.3390/ph15080917

Zhang D., Wang Z., Han X., Li X. L., Lu Z. Y., Dou B. B., et al. (2022). Four bioactive new steroids from the soft coral Lobophytum pauciflorum collected in South China Sea. Beilstein Journal of Organic Chemistry, 18, 374-380. http://doi.org/10.3762/bjoc.18.42

Zhang Y. Y., Ling J., Yang Q. S., Wang Y. S., Sun C. C., Sun H. Y., et al. (2015). The diversity of coral associated bacteria and the environmental factors affect their community variation. Ecotoxicology, 24(7-8), 1467-1477. http://doi.org/10.1007/s10646-015-1454-4

Downloads

Published

30-12-2025

How to Cite

Nguyen , T. P. T., Ta, T. T. T., & Bui, V. N. (2025). Evaluation of the antioxidant activity of coral mucus isolated from Porites lobata in vitro. Vietnam Journal of Biotechnology, 23(4), 583–594. https://doi.org/10.15625/vjbt-23121

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 15 16 17 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.