Longevity/fecundity tradeoff in Caenorhabditis elegans by unfavorable bacteria Microbacterium sp. newly isolated from forest
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-22771Keywords:
Bacteria, longevity, nematodes, preference, reproduction.Abstract
Bacteria are food sources for the Caenorhabditis nematodes. This prey-predator interaction becomes a model to investigate the effects of each bacterial strain on the nematodes at multiple levels (phenotypes to molecular regulations). To see how the interaction could be, we isolated many Caenorhabditis nematodes and the associated bacteria from the forests. Theoretically, they have been living and evolving, suggesting that they would have specific interaction. In this research, we report the identification of a new environmental bacteria associated with the nematode genus Caenorhabditis in Cat Tien National Park with the 16S rDNA. We identified the bacteria as Microbacterium sp. CFBb57.1. In the second part of our investigation, we investigated the impacts of the bacteria on the longevity and reproduction of the model nematode Caenorhabditis elegans using the control Escherichia coli OP50. The results showed that C. elegans living on CFBb57.1 had extended longevity and they had a reduction in reproduction, presenting a longevity/fecundity tradeoff. Last, in the bacterial preference test, we found their preference was modulated on CFBb57.1 in comparison with the control OP50, suggesting that the worms did not prefer CFBb57.1 over OP50. However, more CFBb57.1-acclimating worms were chemotactic to CFBb57.1, indicating that worms had genetic mechanism(s) to adapt to CFBb57.1. C. elegans responded differently to the Microbacterium bacteria in this study and previous reports. In this study, it first showed the tradeoff and acclimation. Thus, this report will facilitate the studies of how the Caenorhabditis nematodes could evolve the mechanism(s) of tradeoff that was also presented in other bacterial genera and the mechanism(s) of acclimation that would be epigenetic to neutralize the impacts of bacteria.
Downloads
References
Alvarez O. A., Jager T., Kooijman S. A. L. M., Kammenga J. E. (2005). Responses to stress Caenorhabditis elegans populations with different reproductive strategies. Functional Ecology, 2005(19), 9. http://doi.org/https://doi.org/10.1111/j.1365-2435.2005.01012.x
Angelo G., Van Gilst M. R. (2009). Starvation protects germline stem cells and extends reproductive longevity in C. elegans. Science, 326(5955), 954-958. http://doi.org/10.1126/science.1178343
Baugh L. R., Day T. (2020). Nongenetic inheritance and multigenerational plasticity in the nematode C. elegans. Elife, 9. http://doi.org/10.7554/eLife.58498
Dirksen P., Assie A., Zimmermann J., Zhang F., Tietje A. M., Marsh S. A., et al. (2020). CeMbio - The Caenorhabditis elegans microbiome resource. G3 (Bethesda), 10(9), 3025-3039. http://doi.org/10.1534/g3.120.401309
Funke G., Falsen E., Barreau C. (1995). Primary identification of Microbacterium spp. encountered in clinical specimens as CDC coryneform group A-4 and A-5 bacteria. Journal of Clinical Microbiology, 33(1), 188-192. http://doi.org/10.1128/jcm.33.1.188-192.1995
Golden J. W., Riddle D. L. (1984). The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Developmental Biology, 102(2), 368-378. http://doi.org/10.1016/0012-1606(84)90201-x
Gravato-Nobre M. J., Nicholas H. R., Nijland R., O'Rourke D., Whittington D. E., Yook K. J., et al. (2005). Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics, 171(3), 1033-1045. http://doi.org/10.1534/genetics.105.045716
Hodgkin J., Kuwabara P. E., Corneliussen B. (2000). A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Current Biology, 10(24), 1615-1618. http://doi.org/10.1016/s0960-9822(00)00867-8
Le T. S., Nguyen T. H. G., Ha B. H., Huong B. T. M., Nguyen T. T. H., Vu K. D., et al. (2022). Reproductive span of Caenorhabditis Elegans is extended by Microbacterium sp. Journal of Nematology, 54(1), 20220010. http://doi.org/10.2478/jofnem-2022-0010
Le T. S., Nguyen T. T. H., Thi Mai Huong B., Nguyen H. G., Ha B. H., Nguyen V. S., et al. (2021). Cultivation of Caenorhabditis elegans on new cheap monoxenic media without peptone. Journal of Nematology, 53. http://doi.org/10.21307/jofnem-2021-036
Leung M. C., Williams P. L., Benedetto A., Au C., Helmcke K. J., Aschner M., et al. (2008). Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological Sciences, 106(1), 5-28. http://doi.org/10.1093/toxsci/kfn121
Mukhopadhyay A., Tissenbaum H. A. (2007). Reproduction and longevity: secrets revealed by C. elegans. Trends in Cell Biology, 17(2), 65-71. http://doi.org/10.1016/j.tcb.2006.12.004
Nicholas H. R., Hodgkin J. (2009). The C. elegans Hox gene egl-5 is required for correct development of the hermaphrodite hindgut and for the response to rectal infection by Microbacterium nematophilum. Developmental Biology, 329(1), 16-24. http://doi.org/10.1016/j.ydbio.2009.01.044
Rankin C. H. (2015). A review of transgenerational epigenetics for RNAi, longevity, germline maintenance and olfactory imprinting in Caenorhabditis elegans. Journal of Experimental Biology, 218(1), 41-49. http://doi.org/10.1242/jeb.108340
Samuel B. S., Rowedder H., Braendle C., Felix M. A., Ruvkun G. (2016). Caenorhabditis elegans responses to bacteria from its natural habitats. Proceedings of the National Academy Sciences, 113(27), E3941-3949. http://doi.org/10.1073/pnas.1607183113
Son le T., Ko K. M., Cho J. H., Singaravelu G., Chatterjee I., Choi T. W., et al. (2011). DHS-21, a dicarbonyl/L-xylulose reductase (DCXR) ortholog, regulates longevity and reproduction in Caenorhabditis elegans. FEBS Letters, 585(9), 1310-1316. http://doi.org/10.1016/j.febslet.2011.03.062
Son L. T., Hang N. T. T., Thu N. T. (2023a). Three rare dioecious Caenorhabditis nematode species (C. tripulationis, C. yungquensis, and C. zanzibari) do not live in the same habitats. Vietnam Journal of Biotechnology, 21(4), 759-764.
Son L. T., Gam N. T. H., Thu N. T., Loan D. T. H. (2023b). Wild-type Caenorhabditis sinica, a dodel nematode for speciation and evolution, massively found in Vietnam. Vietnam Journal of Biotechnology, 21(3). http://doi.org/https://doi.org/10.15625/1811-4989/19494
Son L. T., Huong B. T. M., Hong H. B., Thu N. T. (2024). Nematode isolates of Caenorhabditis brenneri yielded more in Cat Tien but less in Cuc Phuong National Parks. Vietnam Journal of Forest Science, 2024(1), 109-116.
Stiernagle T. (2006). Maintenance of C. elegans. WormBook, 10.1895/wormbook.1.101.1, 1-11. http://doi.org/10.1895/wormbook.1.101.1
Stroustrup N., Ulmschneider B. E., Nash Z. M., Lopez-Moyado I. F., Apfeld J., Fontana W. (2013). The Caenorhabditis elegans lifespan machine. Nature Methods, 10(7), 665-670. http://doi.org/10.1038/nmeth.2475
Tamura K., Stecher G., Kumar S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. http://doi.org/10.1093/molbev/msab120
Yu L., Yan X., Ye C., Zhao H., Chen X., Hu F., et al. (2015). Bacterial respiration and growth rates affect the feeding preferences, brood size and lifespan of Caenorhabditis elegans. PLoS One, 10(7), e0134401. http://doi.org/10.1371/journal.pone.0134401
Zimmermann J., Obeng N., Yang W., Pees B., Petersen C., Waschina S., et al. (2020). The functional repertoire contained within the native microbiota of the model nematode Caenorhabditis elegans. The ISME Journal 14(1), 26-38. http://doi.org/10.1038/s41396-019-0504-y
