Structural characteristics of fucoidanases from marine microorganisms

Hoang Nhu Khanh Huynh, Thi Dieu Trang Vo, Thi Thuy Hang Cao
Author affiliations

Authors

  • Hoang Nhu Khanh Huynh \(^1\) Institute of Oceanography, Vietnam Academy of Science and Technology, 1 Cau Da, Nha Trang, Khanh Hoa, Vietnam
  • Thi Dieu Trang Vo \(^1\) Institute of Oceanography, Vietnam Academy of Science and Technology, 1 Cau Da, Nha Trang, Khanh Hoa, Vietnam
  • Thi Thuy Hang Cao \(^1\) Institute of Oceanography, Vietnam Academy of Science and Technology, 1 Cau Da, Nha Trang, Khanh Hoa, Vietnam
    \(^2\) Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/vjbt-22699

Keywords:

Fucoidan, fucoidanase, marine microorganisms, oligosaccharides, tertiary structure.

Abstract

Fucoidanase is an enzyme that catalyzes the degradation of fucoidan, a complex sulfated polysaccharide found in brown algae, through the hydrolysis of glycosidic bonds between fucose units. This enzyme plays a crucial role in harnessing and optimizing the biological applications of fucoidan, such as immune support, anti-cancer properties, and anti-inflammatory effects. Marine microorganisms are considered a rich source of fucoidanases due to their adaptation to fucoidan-rich environments. This report focuses on the relationship between the structure of fucoidanases from marine microorganisms and its catalytic function on fucoidan substrates, including the active site with conserved amino acids essential for substrate binding, domain structures that facilitate fucoidan recognition, and the enzyme’s selectivity for specific glycosidic linkages. Studies on the tertiary and quaternary structures reveal that the enzyme's spatial configuration not only enables precise fucoidan binding but also ensures stable activity in marine environments. Furthermore, comparative analysis of fucoidanases derived from different marine bacterial strains reveals structural variations that influence their substrate specificity and catalytic efficiency. Notably, the presence of calcium ions (Ca²⁺) has been shown to play a significant role in stabilizing the enzyme’s three-dimensional conformation, maintaining its catalytic integrity, and enhancing its activity under saline conditions commonly found in marine ecosystems. Calcium-binding motifs observed in some fucoidanase structures may also contribute to maintaining structural rigidity, thus improving resistance to denaturation and extending the enzyme’s functional lifespan. Recent advancements in protein modeling and molecular docking have contributed to a deeper understanding of how Ca²⁺ interacts with the enzyme and supports substrate recognition. These insights pave the way for future enzyme engineering efforts aimed at improving fucoidanase stability, activity, and industrial applicability in the production of bioactive oligosaccharides.

Downloads

Download data is not yet available.

References

Ale M. T., Mikkelsen J. D., and Meyer A. S. (2011). Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Marine Drugs, 9, 2106–2130. http://doi.org/10.3390/md9102106

Arai Y., Shingu Y., Yagi H., Suzuki H., and Ohshiro T. (2022). Occurrence of different fucoidanase genes in Flavobacterium sp. SW and enzyme characterization. Journal of Biosciences and Bioengineering, 134, 187–194. http://doi.org/10.1016/j.jbiosc.2022.06.003

Cao H. T. T., Mikkelsen M. D., Lezyk M. J., Bui L. M., Tran V. T. T., Silchenko A. S., et al. (2018). Novel enzyme actions for sulphated galactofucan depolymerisation and a new egineering strategy for molecular stabilisation of fucoidan degrading enzymes. Marine Drugs, 16. http://doi.org/10.3390/md16110422

Colin S., Deniaud E., Jam M., Descamps V., Chevolot Y., Kervarec N., et al. (2006). Cloning and biochemical characterization of the fucanase FcnA: definition of a novel glycoside hydrolase family specific for sulfated fucans. Glycobiology, 16(11), 1021-1032. http://doi.org/10.1093/glycob/cw1029.

Descamps V., Colin S., Lahaye M., Jam M., Richard C., Potin P., et al. (2006). Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Marine Biotechnology, 8, 27–39. http://doi.org/10.1007/s10126-005-5107-0

Furukawa S., Fujikawa T., Koga D., and Ide A. (1992). Purification and some properties of exo-type fucoidanases from Vibrio sp. N-5. Biosciences, Biotechnology, and Biochemistry, 56, 1829–1834. http://doi.org/10.1271/bbb.56.1829

Garcia G., Soto J., Valenzuela C., Bernal M., Barreto J., Luzardo M. d.I.C., et al. (2025). Gut microbiome modulation and health benefits of a novel fucoidan extract from Saccharina latissima: A double-blind, placebo-controlled trial. Microorganisms, 13, 1–46. http://doi.org/10.3390/microorganisms13071545

Kusaykin M. I., Silchenko A. S., Zakharenko A. M., and Zvyagintseva, T. N. (2015). Fucoidanases. Glycobiology, 26, 3–12. http://doi.org/10.1093/glycob/cwv072

Lasica A. M., Ksiazek M., Madej M. and Potempa J. (2017). The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Frontiers in Cellular and Infection Microbiology, 7, 215. http://doi.org/10.3389/fcimb.2017.00215

Li B., Lu F., Wei X., Zhao R. (2008). Fucoidan: Structure and Bioactivity. Molecules, 13(8), 1671-1695. https://doi.org/10.3390/molecules13081671

Lombard V., Golaconda Ramulu H., Drula E., Coutinho P. M., and Henrissat B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42, 490–495. http://doi.org/10.1093/nar/gkt1178

Mikkelsen M. D., Tran V. H. N., Meier S., Nguyen T. T., Holck J., Cao H. T. T., et al. (2023). Structural and functional characterization of the novel endo-α(1,4)-fucoidanase Mef1 from the marine bacterium Muricauda eckloniae. Acta Crystallographica Section D: Structural Biology, 1(79), 1026-1043. http://doi.org/10.1107/S2059798323008732

Nelson S. S., Bollampalli S., McBride M. J. (2008). SprB is a cell surface com- ponent of the Flavobacterium johnsoniae gliding motility machinery. Journal of Bacteriology, 190, 2851–2857. https://doi.org/10.1128/JB.01904-07

Ohmes J., Mikkelsen M. D., Nguyen T. T., Tran V. H. N., Meier S., Nielsen M. S., et al. (2022). Depolymerization of fucoidan with endo-fucoidanase changes bioactivity in processes relevant for bone regeneration. Carbohydrate Polymers, 286, 119286. http://doi.org/10.1016/j.carbpol.2022.119286

Sakai T., Ishizuka K., Shimanaka K., Ikai K., and Kato I. (2003). Structures of oligosaccharides derived from Cladosiphon okamuranus fucoidan by digestion with marine bacterial enzymes. Marine Biotechnology, 5, 536–544. http://doi.org/10.1007/s10126-002-0107-9

Sakai T., Kawai T., and Kato I. (2004). Isolation and characterization of a fucoidan-degrading marine bacterial strain and its fucoidanase. Marine Biotechnology, 6, 335–346. http://doi.org/10.1007/s10126-003-0033-5

Shen J., Chang Y., Zhang Y., Mei X., and Xue, C. (2020). Discovery and characterization of an endo-1,3-fucanase from marine bacterium Wenyingzhuangia fucanilytica: A novel glycoside hydrolase family. Frontiers in Microbiology, 11, 1–11. http://doi.org/10.3389/fmicb.2020.01674

Silchenko A. S., Kusaykin M. I., Zakharenko A. M., Menshova R. V., Khanh H. H. N., Dmitrenok P. S., et al. (2014). Endo-1,4-fucoidanase from Vietnamese marine mollusk Lambis sp. which producing sulphated fucooligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 102, 154–160. http://doi.org/10.1016/j.molcatb.2014.02.007

Silchenko A. S., Rasin A. B., Kusaykin M. I., Kalinovsky A. I., Miansong Z., Changheng L., et al. (2017a). Structure, enzymatic transformation, anticancer activity of fucoidan and sulphated fucooligosaccharides from Sargassum horneri. Carbohydrate Polymers, 175, 654–660. http://doi.org/10.1016/j.carbpol.2017.08.043

Silchenko A. S., Ustyuzhanina N. E., Kusaykin M. I., Krylov V. B., Shashkov A. S., Dmitrenok A., et al. (2017b). Expression and biochemical characterization and substrate specificity of the fucoidanase from Formosa algae. Glycobiology, 27, 1–10. http://doi.org/10.1093/glycob/cww138

Thuan N. T., Maria M. D. M., Tran V. H. N., Vo T. T. D., Rhein-Knudsen, N., Holck, J., et al. (2020). Enzyme-assisted fucoidan extraction from brown macroalgae Fucus distichus subsp. evanescens and Saccharina latissima. Marine Drugs, 18, 562. http://doi.org/10.3390/md18060296

Tran V. H. N., Nguyen T. T., Meier S., Holck J., Cao H. T. T., Van T. T. T., et al. (2022). The endo-α(1,3)-fucoidanase Mef2 releases uniquely branched oligosaccharides from Saccharina latissima fucoidans. Marine Drugs, 20(5), 305. http://doi.org/10.3390/md20050305

Trang V. T. D., Mikkelsen D. M., Vuillemin M., Meier S., Cao H. T. T., Muschiol J., et al. (2022). The endo-α(1,4) specific fucoidanase Fhf2 from Formosa haliotis releases highly sulfated fucoidan oligosaccharides. Frontiers in Plant Science. http://doi.org/10.3389/fpls.2022.823668

Ustyuzhanina N. E., Bilan M. I., Ushakova N. A., Usov A., Kiselevsky M. V., Nifantiev N. E. (2014). Fucoidans: Pro-or antiangiogenic agents? Glycobiology, 24(12), 1265-1274. http://doi.org/10.1093/glycob/cwu063

Vickers C., Liu F., Abe K., Salama-Alber O., Jenkins M., Springate C. M. K., et al. (2018). Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to -L-fucosidases from GH29. Journal of Biological Chemistry, 293, 18296–18308. http://doi.org/10.1074/jbc.RA118.005134

Vuillemin M., Silchenko A. S., Cao H. T. T., Kokoulin M. S., Trang V. T. D., Holck J., et al. (2020). Functional characterization of a new GH107 endo-α-(1,4)-fucoidanase from the marine bacterium Formosa haliotis. Marine Drugs, 18(11), 562. http://doi.org/10.3390/md18110562

Wang Y., Xing M., Cao Q., Ji A., Liang H., and Song S. (2019). Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies. Marine Drugs, 17, 15–17. http://doi.org/10.3390/md17030183

Wu Q., Ma, S., Xiao H., Zhang M., and Cai J. (2011a). Purification and the secondary structure of fucoidanase from Fusarium sp. LD8. Evidence-based Complement and Alternative Medicine. http://doi.org/0.1155/2011/196190

Wu Q., Zhang M., Wu K., Liu B., Cai J., and Pan R. (2011b). Purification and characteristics of fucoidanase obtained from Dendryphiella arenaria TM94. Journal of Applied Phycology, 23, 197–203. http://doi.org/10.1007/s10811-010-9588-5

Zayed A., Cao H. T. T., Trang V. T. D., and Ulber R. (2023). Structural tailoring of fucoidan backbones for maximizing their benefits: Enzymatic, chemical, and physical strategies. Journal of Applied Phycology, 35, 2445–2462. http://doi.org/10.1007/s10811-023-03036-6

Zayed A., and Ulber R. (2020). Fucoidans: Downstream processes and recent applications. Marine Drugs, 18, 1–22. http://doi.org/10.3390/md18030170

Zhu C., Liu Z., Ren L., Jiao S., Zhang X., Wang, Q., et al. (2021). Overexpression and biochemical characterization of a truncated endo-α (1 → 3)-fucoidanase from alteromonas sp. SN-1009. Food Chemistry, 353, 129460. http://doi.org/10.1016/j.foodchem.2021.129460

Zueva A. O., Silchenko A. S., Rasin A. B., Kusaykin M. I., Usoltseva R. V., Kalinovsky A. I., et al. (2020). Expression and biochemical characterization of two recombinant fucoidanases from the marine bacterium Wenyingzhuangia fucanilytica CZ1127T. International Journal of Biological Macromolecules, 164, 3025–3037. http://doi.org/10.1016/j.ijbiomac.2020.08.131

Downloads

Published

30-12-2025

How to Cite

Huynh, H. N. K., Vo, T. D. T., & Cao, T. T. H. (2025). Structural characteristics of fucoidanases from marine microorganisms. Vietnam Journal of Biotechnology, 23(4), 543–554. https://doi.org/10.15625/vjbt-22699

Issue

Section

Articles

Funding data

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.