Isolation and screening of potential bacteriophages for inhibition of Pseudomonas spp. from shrimp’s samples
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-22681Keywords:
Bacterial host, bacteriophages, double-layer agar, Pseudomonas spp, shrimp.Abstract
Pseudomonas spp. are significant bacterial pathogens in farmed shrimp, causing substantial economic losses in aquaculture. This study investigated the potential of bacteriophages to control Pseudomonas spp. isolated from shrimp. Eight Pseudomonas spp. isolates were screened against 28 bacteriophage strains to determine their host range. Bacteriophage strains ΦXP4.1, ΦXP2.1, and ΦXP2.2 were selected for further analysis, including plaque assays and biofilm experiments, due to their ability to infect several Pseudomonas spp. isolates. All three phages effectively infected Pseudomonas sp. VCST7 and reduced bacterial density. Notably, ΦXP4.1 demonstrated the highest efficacy, reducing bacterial density by 11.08% and biofilm biomass by 66.3%. Transmission electron microscopy revealed that ΦXP4.1 belongs to the class Caudoviricetes, with an average head diameter of 61.301 nm and an average tail length of 135.7 nm. These findings suggest that bacteriophages, particularly ΦXP4.1, hold promise as biocontrol agents against Pseudomonas spp. in aquaculture.
Downloads
References
Adnan, M., Ali Shah, M. R., Jamal, M., Jalil, F., Andleeb, S., Nawaz, M. A., et al. (2020). Isolation and characterization of bacteriophage to control multidrug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. Biologicals: Journal of the International Association of Biological Standardization, 63, 89–96. https://doi.org/10.1016/j.biologicals.2019.10.003
Chythanya, R., Karunasagar, I., & Karunasagar, I. (2002). Inhibition of shrimp pathogenic vibrios by a marine Pseudomonas I-2 strain. Aquaculture, 208(1), 1–10. https://doi.org/10.1016/S0044-8486(01)00714-1
de Melo, A. C. C., da Mata Gomes, A., Melo, F. L., Ardisson-Araújo, D. M. P., de Vargas, A. P. C., Ely, V. L., et al. (2019). Characterization of a bacteriophage with broad host range against strains of Pseudomonas aeruginosa isolated from domestic animals. BMC Microbiology, 19(1), 134. https://doi.org/10.1186/s12866-019-1481-z
Duc, H. M., Son, H. M., Yi, H. P. S., Sato, J., Ngan, P. H., Masuda, Y., et al .(2020). Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157:H7 in different food matrices. Food Research International, 131, 108977. https://doi.org/10.1016/j.foodres.2020.108977
Duong V. T. H., & Thai N. M. (2023). Study on the model of Pseudomonas aeruginosa biofilm formation and its application to evaluate inhibitory and antibiofilm of antibiotic. TNU Journal of Science and Technology, 228(13), Article 13. https://doi.org/10.34238/tnu-jst.8181
Ferdous, R., Sultana, N., Hossain, Md. B., Sultana, R. A., & Hoque, S. (2024). Exploring the potential human pathogenic bacteria in selected ready-to-eat leafy greens sold in Dhaka City, Bangladesh: Estimation of bacterial load and incidence. Food Science & Nutrition, 12(2), 1105–1118. https://doi.org/10.1002/fsn3.3825
Jurczak-Kurek, A., Gąsior, T., Nejman-Faleńczyk, B., Bloch, S., Dydecka, A., Topka, G., et al. (2016). Biodiversity of bacteriophages: Morphological and biological properties of a large group of phages isolated from urban sewage. Scientific Reports, 6(1), 34338. https://doi.org/10.1038/srep34338
Kassob, D. S., & Hummadi, E. H. (2023). Study of pyocyanin production and biofilm formation in clinical Pseudomonas aeruginosa. Academic Science Journal, 1(2), Article 2. https://doi.org/10.24237/ASJ.01.02.648B
v, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E., & Johnson, R. P. (2009). Enumeration of bacteriophages by double agar overlay plaque assay. Methods in Molecular Biology (Clifton, N.J.), 501, 69–76. https://doi.org/10.1007/978-1-60327-164-67
Kunisch, F., Campobasso, C., Wagemans, J., Yildirim, S., Chan, B. K., Schaudinn, C., et al. (2024). Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs. Nature Communications, 15(1), 8572. https://doi.org/10.1038/s41467-024-52595-w
Kurt, K., Kurt, H., Tokuç, E., Ozbey, D., Arabacı, D., Aydın, S.,et al.(2025). Isolation and characterization of new lytic bacteriophage PSA-KC1 against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-91073-1
Kwiatek, M., Parasion, S., Rutyna, P., Mizak, L., Gryko, R., Niemcewicz, M., et al. (2017). Isolation of bacteriophages and their application to control Pseudomonas aeruginosa in planktonic and biofilm models. Research in Microbiology, 168(3), 194–207. https://doi.org/10.1016/j.resmic.2016.10.009
Khoa, L, T, A., Hien, T, H., Dung, P, V, V., & Dung, N, T. (2024). Study on Pseudomonas spp. isolated from pork and chicken meat. Heavy metals and arsenic concentrations in water, agricultural soil, and rice in Ngan Son district, Bac Kan province, Vietnam, 7(3), 420–428. https://doi.org/10.47866/2615-9252/vjfc.4369
Latz, S., Krüttgen, A., Häfner, H., Buhl, E. M., Ritter, K., & Horz, H.-P. (2017). Differential effect of newly isolated phages belonging to PB1-Like, phiKZ-Like and LUZ24-Like viruses against multi-drug resistant Pseudomonas aeruginosa under varying growth conditions.Viruses, 9(11), 315. https://doi.org/10.3390/v9110315
Lawrence, J., Korber, D., Hoyle, B., Costerton, J., & Caldwell, D. (1991). Optical sectioning of microbial biofilms. Journal of Bacteriology, 173, 6558–6567. https://doi.org/10.1128/jb.173.20.6558-6567.1991
Lochab, V., Jones, T. H., Dusane, D. H., Peters, C. W., Stoodley, P., Wozniak, D. J., et al. (2020). Ultrastructure imaging of Pseudomonas aeruginosa lawn biofilms and eradication of the tobramycin-resistant variants under in vitro electroceutical treatment. Scientific Reports, 10(1), 9879. https://doi.org/10.1038/s41598-020-66823-y
Low, H. Z., Böhnlein, C., Sprotte, S., Wagner, N., Fiedler, G., Kabisch, J., et al. (2020). Fast and easy phage-tagging and live/dead analysis for the rapid monitoring of bacteriophage infection. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.602444
Mansoor, & Ehteshamul-Haque, S. (2007). Enhancement of biocontrol potential of Pseudomonas aeruginosa and Paecilomyces lilacinus against root rot of mungbean by a medicinal plant Launaea nudicaulis L. Pakistan Journal of Botany 39(6), 2113-2119.
Rombouts, S., Volckaert, A., Venneman, S., Declercq, B., Vandenheuvel, D., Allonsius, C. N., et al. (2016). Characterization of novel bacteriophages for biocontrol of bacterial blight in leek caused by Pseudomonas syringae pv. Porri. Frontiers in Microbiology, 7, 279. https://doi.org/10.3389/fmicb.2016.00279
Sada, T. S., & Tessema, T. S. (2024). Isolation and characterization of lytic bacteriophages from various sources in Addis Ababa against antimicrobial-resistant diarrheagenic Escherichia coli strains and evaluation of their therapeutic potential. BMC Infectious Diseases, 24, 310. https://doi.org/10.1186/s12879-024-09152-z
Sharma, S., Datta, S., Chatterjee, S., Dutta, M., Samanta, J., Vairale, M. G., et al. (2021). Isolation and characterization of a lytic bacteriophage against Pseudomonas aeruginosa.Scientific Reports, 11(1), 19393. https://doi.org/10.1038/s41598-021-98457-z
Stepanović, S., Vuković, D., Dakić, I., Savić, B., & Švabić-Vlahović, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40(2), 175–179. https://doi.org/10.1016/S0167-7012(00)00122-6
Tran P. T. H., Yen N. T. H., & Hien N. T. D. (2021). Antibiotic resistance of Pseudomonas aeruginosaisolated in Can Tho Central General Hospital. Can Tho Journal of Medicine and Pharmacy, 40, 75-81.
Turner, D., Adriaenssens, E. M., Adriaenssens, E. M., Lehman, S. M., Lehman, S. M., Moraru, C., et al. (2023). Bacteriophage taxonomy: A continually evolving discipline. https://doi.org/10.1007/978-1-0716-3523-03
Vinh N. Q., Thuan N. C., Trang N. H., Uyen N. H., & Loi N. T. T. (2020). Isolation of Pseudomonas aeruginosa biosynthesizing pyocyanin antibacterial compound. National Biotechnology Conference 2020, 384-389.
Downloads
Published
How to Cite
Issue
Section
Funding data
-
National Foundation for Science and Technology Development
Grant numbers grant number: 106.04-2019.335
