Probiotic characterization of Levilactobacillus brevis CM04 isolated from Hanoi-pickled Dong Du (Brassica campestris L.

Thi Huong Nguyen, Bao Son Dang, Phuong Khanh Do, Thi Thu Thuy Ta, Thanh Chung Nguyen
Author affiliations

Authors

  • Thi Huong Nguyen \(^1\) Institute of Biological and Food Technology, Hanoi Open University, B101 Building, Nguyen Hien street, Bach Mai ward, Hanoi, Vietnam https://orcid.org/0000-0002-9829-0290
  • Bao Son Dang \(^1\) Institute of Biological and Food Technology, Hanoi Open University, B101 Building, Nguyen Hien street, Bach Mai ward, Hanoi, Vietnam
  • Phuong Khanh Do \(^1\) Institute of Biological and Food Technology, Hanoi Open University, B101 Building, Nguyen Hien street, Bach Mai ward, Hanoi, Vietnam
  • Thi Thu Thuy Ta \(^1\) Institute of Biological and Food Technology, Hanoi Open University, B101 Building, Nguyen Hien street, Bach Mai ward, Hanoi, Vietnam
  • Thanh Chung Nguyen \(^1\) Institute of Biological and Food Technology, Hanoi Open University, B101 Building, Nguyen Hien street, Bach Mai ward, Hanoi, Vietnam https://orcid.org/0000-0002-5168-1745

DOI:

https://doi.org/10.15625/vjbt-22577

Keywords:

CM04, hyperuricemia, probiotic characteristics, safety test

Abstract

Hyperuricemia, characterized by increasing concentrations of serum uric acid, is associated with metabolic disorders such as gout, diabetes, and heart diseases. Hyperuricemia is a prevalent condition with a rapidly increasing global incidence. Probiotics represent the promising option for preventing and treating hyperuricemia without side effects. Microorganisms can be considered probiotics; they must pass safety evaluations. This study assessed the probiotic characteristics of Levilactobacillus brevis CM04. L. brevis CM04 was isolated from Hanoi-pickled Dong Du (Brassica campestris L.) and exhibited high purine degradation ability. This strain showed a strong survival capability in the oral-gastrointestinal assay and adhered to intestinal cells more effectively than Lactobacillus rhamnosus GG (LGG). CM04 grew well in both media with and without sodium taurocholate, however, it did not exhibit bile salt deconjugation activity. Additionally, CM04 exhibited strong antimicrobial activity against pathogenic bacteria and sensitivity to all tested antibiotics. These findings indicate that L. brevis CM04 possesses probiotic characteristics.

Downloads

Download data is not yet available.

References

Ahn Y. T., Kim G. B., Lim K. S., Baek Y. J., & Kim H. U. (2003). Deconjugation of bile salts by Lactobacillus acidophilus isolates. International Dairy Journal, 13(4), 303-311. https://doi.org/10.1016/S0958-6946(02)00174-7

Anisimova E., Gorokhova I., Karimullina G., & Yarullina D. (2022). Alarming antibiotic resistance of lactobacilli isolated from probiotic preparations and dietary supplements. Antibiotics, 11(11), 1557. https://doi.org/10.3390/antibiotics11111557

Begley M., Hill C., & Gahan C. G. (2006). Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology, 72(3), 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006

Casarotti S. N., Carneiro B. M., Todorov S. D., Nero L. A., Rahal P., & Penna A. L. B. (2017). In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Annals of Microbiology, 67, 289-301. https://doi.org/10.1007/s13213-017-1258-2

Gerhardt P., Murray R., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., et al. (1981). Manual of Methods for General Bacteriology (Vol. 1): American Society for Microbiology Washington, DC. https://pmc.ncbi.nlm.nih.gov/articles/instance/270730/pdf/jcm00132-0002.pdf

Han S., Lu Y., Xie J., Fei Y., Zheng G., Wang Z., et al. (2021). Probiotic gastrointestinal transit and colonization after oral administration: A long journey. Frontiers in Cellular and Infection Microbiology, 11, 609722. https://doi.org/10.3389/fcimb.2021.609722

Honda K., Moto M., Uchida N., He F., & Hashizume N. (2012). Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. Journal of Clinical Biochemistry and Nutrition, 51(2), 96-101. https://doi.org/10.3164/jcbn.11-07

Huong N. T., Son D. B., Anh N. T. N., Khanh D. P., Thuy T. T. T., & Chung N. T. (2025). Isolation and screening of purine-lowering lactic bacteria strains from pickled shrimps and pickled dong du. TNU Journal of Science and Technology, 230(09), 332-339. https://doi.org/10.34238/tnu-jst.11426

Huong V. Q., Yen V. T., & Thuy N. T. T. (2022). Isolation and selection of lactic acid bacteria for probiotic beverage production from ginger. Vietnam Journal of Agricultural Sciences, 20(12), 1581-1590. https://tapchi.vnua.edu.vn/wp-content/uploads/2023/01/tap-chi-so-12.1s.pdf

Jang H. J., Lee N.-K., & Paik H. D. (2019). Probiotic characterization of Lactobacillus brevis KU15153 showing antimicrobial and antioxidant effect isolated from kimchi. Food Science and Biotechnology, 28, 1521-1528. https://doi.org/10.1007/s10068-019-00576-x

Kuda T., Kawahara M., Nemoto M., Takahashi H., & Kimura B. (2014). In vitro antioxidant and anti-inflammation properties of lactic acid bacteria isolated from fish intestines and fermented fish from the Sanriku Satoumi region in Japan. Food Research International, 64, 248-255. https://doi.org/10.1016/j.foodres.2014.06.028

Lee N. K., Han K. J., Son S. H., Eom S. J., Lee, S. K., & Paik H. D. (2015). Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT-Food Science and Technology, 64(2), 1036-1041. https://doi.org/10.1016/j.lwt.2015.07.019

Lee Y., Kim N., Werlinger P., Suh D.-A., Lee H., Cho J. H., et al. (2022). Probiotic characterization of Lactobacillus brevis MJM60390 and in vivo assessment of its antihyperuricemic activity. Journal of Medicinal Food, 25(4), 367-380. https://doi.org/10.1089/jmf.2021.K.0171

Li L., Zhang Y., & Zeng C. (2020). Update on the epidemiology, genetics, and therapeutic options of hyperuricemia. American Journal of Translational Research, 12(7), 3167. https://pmc.ncbi.nlm.nih.gov/articles/PMC7407685/pdf/ajtr0012-3167.pdf

Lin J.-X., Xiong T., Peng Z., Xie M., & Peng F. (2022). Novel lactic acid bacteria with anti-hyperuricemia ability: Screening and in vitro probiotic characteristics. Food Bioscience, 49, 101840.

Rychen G., Aquilina G., Azimonti G., Bampidis V., Bastos M. de L., Bories G., et al. (2018). Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA Journal, 16(3), e05206. https://doi.org/10.2903/j.efsa.2018.5206

Palaniyandi S. A., Damodharan K., Suh J. W., & Yang S. H. (2020). Probiotic characterization of cholesterol-lowering Lactobacillus fermentum MJM60397. Probiotics and Antimicrobial Proteins, 12, 1161-1172. https://doi.org/10.1007/s12602-019-09585-y

Pham H. N., Nguyen K.T., Luyen T.N.P., Tran K.L., Bui D.T.N & Tran L. H. (2024). Isolation and screening of lactic acid bacteria with probiotic potetials from nem chua for applycation in probiotic production. National Biotechnology Conference 2024, 278-283.

Pillinger M. H., & Mandell B. F. (2020). Therapeutic approaches in the treatment of gout. Paper presented at the Seminars in Arthritis and Rheumatism. https://doi.org/10.1016/j.semarthrit.2020.04.010

Reid G. (2005). The importance of guidelines in the development and application of probiotics. Current Pharmaceutical Design, 11(1), 11-16. https://doi.org/10.2174/1381612053382395

Rocha C. S., Gomes-Santos A. C., Moreira T. G., de Azevedo M., Luerce T. D., Mariadassou M., et al. (2014). Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii. PLoS One, 9(1), e85923. https://doi.org/10.1371/journal.pone.0085923

Sharma R., Garg P., Kumar P., Bhatia S. K., & Kulshrestha S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. Fermentation, 6(4), 106. https://doi.org/10.3390/fermentation6040106

Wiegand I., Hilpert K., & Hancock R. E. (2008).

Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163-175. https://doi.org/10.1038/nprot.2007.521

Yang S. C., Lin C.-H., Sung C. T., & Fang J. Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in Microbiology, 5, 241. https://doi.org/10.3389/fmicb.2014.00241

Yu H. S., Jang H. J., Lee N. K., & Paik H. D. (2019). Evaluation of the probiotic characteristics and prophylactic potential of Weissella cibaria strains isolated from kimchi. LWT, 112, 108229. https://doi.org/10.1016/j.lwt.2019.05.127

Zhao H., Lu Z., & Lu Y. (2022). The potential of probiotics in the amelioration of hyperuricemia. Food & Function, 13(5), 2394-2414. https://doi.org/10.1039/D1FO03206B

Downloads

Published

30-09-2025

How to Cite

Nguyen, T. H., Dang, B. S., Do, P. K., Ta, T. T. T., & Nguyen, T. C. (2025). Probiotic characterization of Levilactobacillus brevis CM04 isolated from Hanoi-pickled Dong Du (Brassica campestris L. Vietnam Journal of Biotechnology, 23(3), 391–401. https://doi.org/10.15625/vjbt-22577

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.