Postharvest preservation of fruits and vegetables by natural based edible coatings – A review

Hang Nga Nguyen, Van Hoang Dao, Thi Minh Tu Nguyen, Thi Van Anh Pham
Author affiliations

Authors

  • Hang Nga Nguyen \(^1\) School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
  • Van Hoang Dao \(^1\) School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
  • Thi Minh Tu Nguyen \(^1\) School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
  • Thi Van Anh Pham \(^1\) School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/vjbt-22572

Keywords:

Biopolymers, edible coatings, natural preservatives, postharvest preservation, shelf life extension.

Abstract

The market demand for fruits and vegetables is substantial due to their high nutritional value. However, their perishable nature results in relatively short shelf life. Approximately 40% of produce is lost due to damage from insects, microorganisms, and adverse conditions during harvesting, transportation, and storage. Consequently, preservation of fruits and vegetables presents a significant global challenge. Various preservation methods have been applied to fruits and vegetables, with particular interest in biopolymers (polysaccharides, proteins, lipids, etc.) and their combinations with plant-derived products that possess diverse biological activities, renewability, and environmental compatibility. These coatings act as protective barriers, reducing moisture loss, delaying ripening, and inhibiting microbial growth, thereby extending the shelf life of produce. Polysaccharides such as chitosan, alginate, and cellulose derivatives are widely used due to their film-forming properties and biocompatibility. Proteins like gelatin and casein, as well as lipids such as beeswax and carnauba wax, are also employed to enhance the mechanical and barrier properties of the coatings. Additionally, plant-derived compounds such as essential oils, polyphenols, and flavonoids are incorporated into these coatings to provide antioxidant and antimicrobial benefits, further improving preservation efficacy. By leveraging the potential of biopolymers and plant-derived compounds, the development of advanced edible coatings can significantly contribute to the global effort to preserve perishable produce and meet the increasing demand for fresh and nutritious fruits and vegetables.This review presents the applications of natural edible coatings for postharvest preservation of fruits.

Downloads

Download data is not yet available.

References

Amakura Y., Umino Y., Tsuji S., Ito H., Hatano T., Yoshida, T., et al. (2002). Constituents and their antioxidative effects in eucalyptus leaf extract used as a natural food additive. Food Chemistry, 77(1), 47–56. https://doi.org/10.1016/S0308-8146(01)00321-1

Andrade R. D., Skurtys O., & Osorio F. A. (2012). Atomizing spray systems for application of edible coatings. Comprehensive Reviews in Food Science and Food Safety, 11(3), 323–337. https://doi.org/10.1111/j.1541-4337.2012.00186.x

Arvanitoyannis I., Psomiadou E., Nakayama A., Aiba S., & Yamamoto N. (1997). Edible coatings made from gelatin, soluble starch and polyols, Part 3. Food Chemistry, 60(4), 593–604. https://doi.org/10.1016/S0308-8146(97)00038-1

Avena‐Bustillos R. J., & Krochta J. M. (1993). Water vapor permeability of caseinate‐based edible coatings as affected by pH, calcium crosslinking and lipid content. Journal of Food Science, 58(4), 904–907. https://doi.org/10.1111/j.1365-2621.1993.tb09388.x

Baranwal A., Srivastava A., Kumar P., Bajpai V. K., Maurya P. K., & Chandra P. (2018). Prospects of nanostructure materials and their composites as antimicrobial agents. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00422

Bautista-Baños S., Romanazzi G., & Jiménez-Aparicio A. (2016). Chitosan in the preservation of agricultural commodities. Academic Press.

Benchaar C., Calsamiglia S., Chaves A. V Fraser G. R., Colombatto D., McAllister T. A., & et al. (2008). A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology, 145(1–4), 209–228.

Calva-Estrada S. J., Jiménez-Fernández M., & Lugo-Cervantes E. (2019). Protein-based films: Advances in the development of biomaterials applicable to food packaging. Food Engineering Reviews, 11(2), 78–92. https://doi.org/10.1007/s12393-019-09189-w

Campos C. A., Gerschenson L. N., & Flores S. K. (2011). Development of edible coatings and coatings with antimicrobial activity. Food and Bioprocess Technology, 4(6), 849–875. https://doi.org/10.1007/s11947-010-0434-1

Cantín C. M., Minas I. S., Goulas V., Jiménez M., Manganaris G. A., Michailides T. J., & et al. (2012). Sulfur dioxide fumigation alone or in combination with CO2-enriched atmosphere extends the market life of highbush blueberry fruit. Postharvest Biology and Technology, 67, 84–91. https://doi.org/10.1016/j.postharvbio.2011.12.006

Cazón P., Velazquez G., Ramírez J. A., & Vázquez M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

Chang Y., Ferreira M. D., Correa D. S., Teodoro K. B. R., Procopio F. R., Brexó R. P., et al. (2025). Advances in postharvest nanotechnology: Enhancing fresh produce shelf life and quality to reduce losses and waste. Postharvest Biology and Technology, 222, 113397. https://doi.org/10.1016/j.postharvbio.2025.113397

Chong K. L., Peng N., Yin H., Lipscomb G. G., & Chung T.-S. (2013). Food sustainability by designing and modelling a membrane-controlled atmosphere storage system. Journal of Food Engineering, 114(3), 361–374. https://doi.org/10.1016/j.jfoodeng.2012.08.027

Cowan M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582. https://doi.org/10.1128/CMR.12.4.564

Dai L., Zhang J., & Cheng F. (2020). Cross-linked starch-based edible coating reinforced by starch nanocrystals and its preservation effect on graded Huangguan pears. Food Chemistry, 311, 125891. https://doi.org/10.1016/j.foodchem.2019.125891

Dang K. T. H., Singh Z., & Swinny E. E. (2008). Edible coatings influence fruit ripening, quality, and aroma biosynthesis in mango fruit. Journal of Agricultural and Food Chemistry, 56(4), 1361–1370. https://doi.org/10.1021/jf072208a

De Aquino A. B., Blank A. F., & de Aquino Santana L. C. L. (2015). Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chemistry, 171, 108–116. https://doi.org/10.1016/j.foodchem.2014.08.077

Dhall R. K. (2013). Advances in edible coatings for fresh fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 53(5), 435–450. https://doi.org/10.1080/10408398.2010.541568

Doan T. B., L. T. K. K. O. L. T. M. H. Đ. V. M. T. T. H. (2018). (2018). Effect of Hyokan cold storage conditions on the quality of oranges. Vietnam Journal of Science and Technology, 60(12), 40–44.

Duan C., Meng X., Meng J., Khan Md. I. H., Dai L., Khan A., An X., Zhang J., Huq T., & Ni Y. (2019). Chitosan as a preservative for fruits and vegetables: A review on chemistry and antimicrobial properties. Journal of Bioresources and Bioproducts, 4(1), 11–21. https://doi.org/10.21967/jbb.v4i1.189

Elsabee M. Z., & Abdou E. S. (2013). Chitosan based edible coatings and coatings: A review. Materials Science and Engineering: C, 33(4), 1819–1841. https://doi.org/10.1016/j.msec.2013.01.010

Embuscado M. E., & Huber K. C. (2009). Edible coatings and coatings for food applications (Vol. 9). Springer.

Ferreira A., Alves V., & Coelhoso I. (2016). Polysaccharide-based membranes in food packaging applications. Membranes, 6(2), 22. https://doi.org/10.3390/membranes6020022

Ferrier P. (2010). Irradiation as a quarantine treatment. Food Policy, 35(6), 548–555. https://doi.org/10.1016/j.foodpol.2010.06.001

Formiga A. S., Pereira E. M., Junior J. S. P., Costa F. B., & Mattiuz B.-H. (2022). Effects of edible coatings on the quality and storage of early harvested guava. Food Chemistry Advances, 1, 100124. https://doi.org/10.1016/j.focha.2022.100124

Galgano F., Condelli N., Favati F., Di Bianco V., Perretti G., & Caruso M. C. (2015). Biodegradable packaging and edible coating for fresh-cut fruits and vegetables. Italian Journal of Food Science, 27(1), 1A. https://doi:10.14674/1120-1770%2Fijfs.v27i1.70

Gol N. B., & Ramana Rao T. V. (2011). Banana Fruit Ripening as Influenced by Edible Coatings. International Journal of Fruit Science, 11(2), 119–135. https://doi.org/10.1080/15538362.2011.578512

Greener I. K., & Fennema O. (1989). Evaluation of edible, bilayer films for use as moisture barriers for food. Journal of Food Science, 54(6), 1400–1406. https://doi.org/10.1111/j.1365-2621.1989.tb05121.x

Guo Q., Paliy M., Kobe B., Trebicky T., Suhan N., Arsenault G., et al. (2015). Characterization of cross‐linking depth for thin polymeric films using atomic force microscopy. Journal of Applied Polymer Science, 132(8). https://doi.org/10.1002/app.41493

Hagenmaier R. D., & Shaw P. E. (1990). Moisture permeability of edible coatings made with fatty acid and hydroxypropyl methyl cellulose. Journal of Agricultural and Food Chemistry, 38(9), 1799–1803. https://doi.org/10.1021/jf00099a004

Hassan B., Chatha S. A. S., Hussain A. I., Zia K. M., & Akhtar N. (2018). Recent advances on polysaccharides, lipids and protein based edible coatings and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097

Hodges r. J., buzby j. C., & bennett b. (2011). Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. The Journal of Agricultural Science, 149(S1), 37–45. https://doi.org/10.1017/S0021859610000936

Huber K. C., & Embuscado M. E. (Eds.). (2009). Edible coatings and coatings for food applications. Springer New York. https://doi.org/10.1007/978-0-387-92824-1

Jamróz E., Kulawik P., & Kopel P. (2019). The effect of nanofillers on the functional properties of biopolymer-based films: A Review. Polymers, 11(4), 675. https://doi.org/10.3390/polym11040675

Jaworek A., & Sobczyk A. T. (2008). Electrospraying route to nanotechnology: An overview. Journal of Electrostatics, 66(3–4), 197–219. https://doi.org/10.1016/j.elstat.2007.10.001

Jongsri P., Wangsomboondee T., Rojsitthisak P., & Seraypheap K. (2016). Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. LWT, 73, 28–36. https://doi.org/10.1016/j.lwt.2016.05.038

Kambhampati V. (2019). A review on postharvest management and advances in the minimal processing of fresh-cut fruits and vegetables. Journal of Microbiology, Biotechnology and Food Sciences, 8, 1178–1187. https://doi.org/10.15414/jmbfs.2019.8.5.1178-1187

Kaur S., Kumar Y., Singh V., Kaur J., & Panesar P. S. (2024). Cold plasma technology: Reshaping food preservation and safety. Food Control, 163, 110537. https://doi.org/10.1016/j.foodcont.2024.110537

Khan M. K. I., Schutyser M., Schroën K., & Boom R. (2014). Barrier properties and storage stability of edible coatings prepared with electrospraying. Innovative Food Science & Emerging Technologies, 23, 182–187. https://doi.org/10.1016/j.ifset.2014.03.001

Krochta J. M., & Mulder-Johnston C. de. (1997). Edible and biodegradable polymer films: challenges and opportunities. 51(2), 61–74.

Kumar G., & Prabhu K. N. (2007). Review of non-reactive and reactive wetting of liquids on surfaces. Advances in Colloid and Interface Science, 133(2), 61–89. https://doi.org/10.1016/j.cis.2007.04.009

Lee K.-G., & Shibamoto T. (2001). Antioxidant property of aroma extracts isolated from clove buds [Syzygium aromaticum (L.) Merr. et Perry]. Food Chemistry, 74(4), 443–448. https://doi.org/10.1016/S0308-8146(01)00161-3

Lee S.-J., Umano K., Shibamoto T., & Lee K.-G. (2005). Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chemistry, 91(1), 131–137. https://doi.org/10.1016/j.foodchem.2004.05.056

Lin D., & Zhao Y. (2007). Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60–75. https://doi.org/10.1111/j.1541-4337.2007.00018.x

Lo’ay A. A., & Taher M. A. (2018). Influence of edible coatings chitosan/PVP blending with salicylic acid on biochemical fruit skin browning incidence and shelf life of guava fruits cv. ‘Banati.’ Scientia Horticulturae, 235, 424–436. https://doi.org/10.1016/j.scienta.2018.03.008

Luangapai F., Peanparkdee M., & Iwamoto S. (2019). Biopolymer films for food industries: properties, applications, and future aspects based on chitosan. Reviews in Agricultural Science, 7(0), 59–67. https://doi.org/10.7831/ras.7.0_59

Manisha Ch. Momin, A. R. J. N. A. T. H. O. B. D. (2021). Edible coatings in fruits and vegetables: A brief review. The Pharma Innovation Journal, 10(7), 71-78.

Md Nor S., & Ding P. (2020). Trends and advances in edible biopolymer coating for tropical fruit: A review. Food Research International, 134, 109208. https://doi.org/10.1016/j.foodres.2020.109208

Milos M. (2000). Chemical composition and antioxidant effect of glycosidically bound volatile compounds from oregano (Origanum vulgare L. ssp. hirtum). Food Chemistry, 71(1), 79–83. https://doi.org/10.1016/S0308-8146(00)00144-8

Mujtaba M., Morsi R. E., Kerch G., Elsabee M. Z., Kaya, M., Labidi, J., et al. (2019). Current advancements in chitosan-based film production for food technology; A review. International Journal of Biological Macromolecules, 121, 889–904. https://doi.org/10.1016/j.ijbiomac.2018.10.109

Nascimento J. I. G., Stamford T. C. M., Melo N. F. C. B., Nunes I. dos S., Lima M. A. B., et al. (2020). Chitosan–citric acid edible coating to control Colletotrichum gloeosporioides and maintain quality parameters of fresh-cut guava. International Journal of Biological Macromolecules, 163, 1127–1135. https://doi.org/10.1016/j.ijbiomac.2020.07.067

Palou L., Valencia-Chamorro S., & Pérez-Gago M. (2015). Antifungal edible coatings for fresh citrus fruit: A Review. Coatings, 5(4), 962–986. https://doi.org/10.3390/coatings5040962

Pandey A. K., Kumar P., Singh P., Tripathi N. N., & Bajpai V. K. (2017). Essential oils: Sources of antimicrobials and food preservatives. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.02161

Prashanth K. V. H., Baskaran R., DhanyaSri E. B., & Rajashekaramurthy. (2016). Bioactive chitosan-based coatings: functional applications in shelf-life extension of Alphonso mango – a sweet story. Pure and Applied Chemistry, 88(9), 853–863. https://doi.org/10.1515/pac-2016-0704

Radev R., & Kurshumov V. (2024). Cost price of edible coatings and coatings for fresh fruit and vegetables. BIO Web of Conferences, 141, 01001. https://doi.org/10.1051/bioconf/202414101001

Raghav P., Agarwal N., & Saini M. (2016). Edible coating of fruits and vegetables: A Review. 1, 2455–5630.

Ratikanta Maiti A. K. T. A. G. D. M. (2018). Research trends in bioresource management and technology. Chapter 6: Post Harvest Management of Agricultural Produce.

Refilda Oktafia N., Winardi P. R., Salim E., & Yefrida. (2022). Utilization of Aloe vera gel and Acalypha indica. L leaf extract as edible coating to increase the shelf life of guava (Psidium guajava. L) fruit. IOP Conference Series: Earth and Environmental Science, 1059(1), 012048. https://doi.org/10.1088/1755-1315/1059/1/012048

Rhim J.-W., Lee J. H., & Ng P. K. W. (2007). Mechanical and barrier properties of biodegradable soy protein isolate-based films coated with polylactic acid. LWT - Food Science and Technology, 40(2), 232–238. https://doi.org/10.1016/j.lwt.2005.10.002

Samad Bodbodak Z. R. (2016). Recent trends in active packaging in fruits and vegetables. Eco-Friendly Technology for Postharvest Produce Quality, 77–125. https://doi.org/10.1016/B978-0-12-804313-4.00003-7

Sapru V., & Labuza T. P. (1994). Dispersed phase concentration effect on water vapor permeability in composite methyl cellulose-stearic acid edible coatings. Journal of Food Processing and Preservation, 18(5), 359–368. https://doi.org/10.1111/j.1745-4549.1994.tb00259.x

Serrano M., Valverde J. M., Guillén F., Castillo S., Martínez-Romero D., & Valero D. (2006). Use of aloe vera gel coating preserves the functional properties of table grapes. Journal of Agricultural and Food Chemistry, 54(11), 3882–3886. https://doi.org/10.1021/jf060168p

Shan B., Cai Y. Z., Sun M., & Corke H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry, 53(20), 7749–7759. https://doi.org/10.1021/jf051513y

Sharma P., Kehinde B. A., Kaur S., & Vyas P. (2019). Application of edible coatings on fresh and minimally processed fruits: a review. Nutrition & Food Science, 49(4), 713–738. https://doi.org/10.1108/NFS-08-2018-0246

Silva-Weiss A., Ihl M., Sobral P. J. A., Gómez-Guillén M. C., & Bifani V. (2013). Natural additives in bioactive edible coatings and coatings: Functionality and applications in foods. Food Engineering Reviews, 5(4), 200–216. https://doi.org/10.1007/s12393-013-9072-5

Skurtys O., Acevedo C., Pedreschi F., Enrione, J., Osorio F., & Aguilera J. M. (2010). Food hydrocolloid edible coatings and coatings. Food Hydrocolloids: Characteristics, Properties and Structures, 3, 41–80.

Suriati L., Mangku I. G. P., & Rudianta I. N. (2018). The characteristics of Aloe vera gel as an edible coating. IOP Conference Series: Earth and Environmental Science, 207, 012051. https://doi.org/10.1088/1755-1315/207/1/012051

Tavassoli-Kafrani E., Shekarchizadeh H., & Masoudpour-Behabadi M. (2016). Development of edible coatings and coatings from alginates and carrageenans. Carbohydrate Polymers, 137, 360–374. https://doi.org/10.1016/j.carbpol.2015.10.074

Valencia-Chamorro S. A., Palou L., del Río M. A., & Pérez-Gago M. B. (2011). Antimicrobial edible coatings and coatings for fresh and minimally processed fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 51(9), 872–900. https://doi.org/10.1080/10408398.2010.485705

Zambrano-Zaragoza M. L., Mercado-Silva E., Ramirez-Zamorano P., Cornejo-Villegas M. A., Gutiérrez-Cortez E., et al. (2013). Use of solid lipid nanoparticles (SLNs) in edible coatings to increase guava (Psidium guajava L.) shelf-life. Food Research International, 51(2), 946–953. https://doi.org/10.1016/j.foodres.2013.02.012

Downloads

Published

30-12-2025

How to Cite

Nguyen, H. N., Dao, V. H., Nguyen, T. M. T., & Pham, T. V. A. (2025). Postharvest preservation of fruits and vegetables by natural based edible coatings – A review . Vietnam Journal of Biotechnology, 23(4), 429–448. https://doi.org/10.15625/vjbt-22572

Issue

Section

Review Paper

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.