Anticancer properties of Cyperus amuricus: In vitro and in silico studies targeting HEPG2 liver cancer cells via the Akt/survivin/Bcl-2 signaling pathway

Khoi Thanh Tu, Kien Cuong Tran, Hoa Ninh Luong, Huu Thuan Anh Nguyen, Thanh Luan Nguyen, Minh Quan Pham, Quoc Long Pham, Thi Hai Ha Pham
Author affiliations

Authors

  • Khoi Thanh Tu \(^1\) Center for Hi-Tech Development, Nguyen Tat Thanh University, Saigon Hi-Tech Park, D2 street, Long Thanh My, Ho Chi Minh city 700000, Vietnam https://orcid.org/0009-0005-6422-2264
  • Kien Cuong Tran \(^1\) Center for Hi-Tech Development, Nguyen Tat Thanh University, Saigon Hi-Tech Park, D2 street, Long Thanh My, Ho Chi Minh city 700000, Vietnam
    \(^2\) NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh street, Xom Chieu, Ho Chi Minh city 700000, Vietnam
    https://orcid.org/0009-0003-4196-9002
  • Hoa Ninh Luong \(^1\) Center for Hi-Tech Development, Nguyen Tat Thanh University, Saigon Hi-Tech Park, D2 Street, Long Thanh My Ward, Ho Chi Minh City 700000, Vietnam.
    \(^2\) NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, Xom Chieu Ward, Ho Chi Minh City 700000, Vietnam.
  • Huu Thuan Anh Nguyen \(^1\) Center for Hi-Tech Development, Nguyen Tat Thanh University, Saigon Hi-Tech Park, D2 street, Long Thanh My, Ho Chi Minh city 700000, Vietnam
    \(^2\) NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh street, Xom Chieu, Ho Chi Minh city 700000, Vietnam
    https://orcid.org/0000-0003-3741-9238
  • Thanh Luan Nguyen \(^3\) HUTECH Institute of Applied Science, HUTECH University, 475A Dien Bien Phu, Thanh My Tay, Ho Chi Minh city 700000, Vietnam
  • Minh Quan Pham \(^4\) Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Hanoi, Vietnam
    \(^5\) Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Hanoi, Vietnam
    https://orcid.org/0000-0001-6922-1627
  • Quoc Long Pham \(^4\) Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Hanoi, Vietnam
    \(^5\) Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Hanoi, Vietnam
  • Thi Hai Ha Pham \(^1\) Center for Hi-Tech Development, Nguyen Tat Thanh University, Saigon Hi-Tech Park, D2 street, Long Thanh My, Ho Chi Minh city 700000, Vietnam
    \(^2\) NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh street, Xom Chieu, Ho Chi Minh city 700000, Vietnam
    https://orcid.org/0000-0001-7929-0618

DOI:

https://doi.org/10.15625/vjbt-22415

Keywords:

Akt/survivin/Bcl-2 signaling pathway, anticancer activity, Cyperus amuricus, caspase-3, molecular docking study.

Abstract

Cyperus amuricus has been used in folk medicine to treat urolithiasis and prevent cancer. To confirm the biological activities of C. amuricus, the aim of this study is to determine and investigate the potential of anticancer activities against the HepG2 liver cancer cell line. For this purpose, the binding inhibiting activities of phenolic and flavonoid compounds docked to proteins of the Akt/survivin/Bcl-2 signaling pathway were investigated in silico and in vitro. Before analyzing the bioactivities, the crude methanol extract of C. amuricus was fractionated with various solvents. The total phenolic content (TPC) was quantified using the Folin-Ciocalteu reagent assay, whereas the total flavonoid content (TFC) was determined using the aluminum chloride assay. The MTT assay and Western blotting study were performed to determine the potential cytotoxicity of the ethyl acetate fraction (E fraction) of C. amuricus. At 221.86 ± 2.17 µg GAE/mg and 386.67 ± 4.83 µg QE/mg, the E fraction had significant levels of phenolic and flavonoid compounds. The E fraction surpassed the crude methanol extract and other fractions in terms of radical scavenger capacity with an IC50 value of 21.07 ± 0.30 µg/ml. In particular, the E fraction had high cytotoxic activity against the HepG2 cell line of hepatocellular carcinoma (IC50 = 166.50 µg/ml) but not against the standard fibroblast cell line. Western blot analysis demonstrated that the E fraction effectively induced caspase-3 activation while inhibiting the expression of Akt, survivin, and Bcl-2 in a concentration-dependent manner. Mechanistically, the molecular docking analysis results revealed that the phenolic and flavonoid compounds found in the Cyperaceae family could serve as potential phytochemicals with antioxidant and anticancer effects by targeting proteins associated with cancer proliferation. These initial findings suggested that C. amuricus could inhibit the growth of HepG2 cancer cells in vitro via the Akt/survivin/Bcl-2 signaling pathway.

Downloads

Download data is not yet available.

References

Ferenci P., Fried M., Labrecque D., Bruix J., Sherman M., Omata M., et al. (2010) Hepatocellular carcinoma (HCC): a global perspective. Journal of Clinical Gastroenterology, 44(4), 239-245. https://doi.org/10.1097/MCG.0b013e3181d46ef2.

Rahbari N. N., Mehrabi A., Mollberg N. M., Müller S. A., Koch M., Büchler M. W., et al. (2011) Hepatocellular carcinoma: current management and perspectives for the future. Annals of Surgery, 253, 453-469. https://doi.org/10.1097/SLA.0b013e31820d944f.

Paglino C., Mosca A. (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Frontiers in Oncology, 4, 64. https://doi.org/10.3389/fonc.2014.00064.

Tungsukruthai S., Reamtong O., Roytrakul S.., Sukrong S, Vinayanwattikun C., Chanvorachote P. (2021) Targeting akt/mtor and bcl-2 for autophagic and apoptosis cell death in lung cancer: novel activity of a polyphenol compound. Antioxidants, 10, 534. https://doi.org/10.3390/antiox10040534.

Reed J. C. (2000) Mechanisms of apoptosis. The American Journal of Pathology, 157, 1415-1430. https://doi.org/10.1016/S0002-9440(10)64779-7.

Altieri D., C. (2008) Survivin, cancer networks and pathway-directed drug discovery. Nature Reviews Cancer, 8, 61-70. https://doi.org/10.1038/nrc2293.

Youle R. J., Strasser A. (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nature Reviews Molecular Cell Biology, 9, 47-59. https://doi.org/10.1038/nrm2308.

Bose P., Gandhi V., Konopleva M. (2017) Pathways and mechanisms of venetoclax resistance. Leukemia Lymphoma, 58, 2026-2039.

Mirza-Aghazadeh-Attari M., Ekrami E. M., Aghdas S. A. M., Mihanfar A., Hallaj S., Yousefi B., et al. (2020) Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sciences, 255, 117481. https://doi.org/10.1016/j.lfs.2020.117481.

Li S., Tan H. Y., Wang N., Cheung F., Hong M., Feng Y. (2018) The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxidative Medicine Cellular Longevity, 2018, 8394818.

Kopustinskiene D. M., Jakstas V., Savickas A., Bernatoniene J. (2020) Flavonoids as anticancer agents. Nutrients, 12, 457. https://doi.org/10.3390/nu12020457.

Pham H. H. T., Seong Y-A., Ngabire D., Oh C-W., Kim G-D. (2017) Cyperus amuricus induces G1 arrest and apoptosis through endoplasmic reticulum stress and mitochondrial signaling in human hepatocellular carcinoma Hep3B cells. Journal of Ethnopharmacology, 208, 157-164. https://doi.org/10.1016/j.jep.2017.07.002.

Taheri Y., Herrera-Bravo J., Huala L., Salazar L. A., Sharifi-Rad J., Akram M., et al. (2021) Cyperus spp.: a review on phytochemical composition, biological activity, and health-promoting effects. Oxidative Medicine Cellular Longevity, 2021, 4014867. https://doi.org/10.1155/2021/4014867.

Im Lee. S., Choi H., Jeon H., Baek N. I., Kim S. H., Kim H. J., et al. (2008) Antioxidant phenolic components from the whole plant extract of Cyperus amuricus Max. Korean Journal of Pharmacognosy, 39, 233-236.

Sharma N., Sharma V. K., Seo S-Y. (2005) Screening of some medicinal plants for anti-lipase activity. Journal of Ethnopharmacology, 97, 453-456.

Tiwari P., Kumar B., Kaur M., Kaur G., Kaur H. (2011) Phytochemical screening and extraction: a review. Internationale Pharmaceutica Sciencia, 1, 98-106.

Mwamatope B., Tembo D., Chikowe I., Kampira E., Nyirenda C. (2020) Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. Scientific African, 9, e00481. https://doi.org/10.1016/j.sciaf.2020.e00481.

Martono Y., Yanuarsih F., Aminu N., Muninggar J. (2019) Fractionation and determination of phenolic and flavonoid compound from Moringa oleifera leaves. Journal of Physics: Conference Series, 1307, 012014.

Mensor L. L., Menezes F. S., Leitão G. G., Reis A. S., Santos T. C. d., Coube C. S., et al. (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15, 127-130. https://doi.org/10.1002/ptr.687.

Cragg G. M., Pezzuto J. M. (2016) Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Medical Principles Practice, 25, 41-59. https://doi.org/10.1159/000443404.

Imai Y., Yamagishi H., Ono Y., Ueda Y. (2012) Versatile inhibitory effects of the flavonoid-derived PI3K/Akt inhibitor, LY294002, on ATP-binding cassette transporters that characterize stem cells. Clinical Translational Medicine, 1, 1-7.

Litovchick L. (2020) Immunoblotting. Cold Spring Harbor Protocols 2020, 6.

Fan J., Fu A., Zhang L. (2019) Progress in molecular docking. Quantitative Biology, 7, 83-89.

Trott O., Vina A. O. A. (2010) Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 21334, 455-461. https://doi.org/10.1002/jcc.21334

Pietta P-G. (2000) Flavonoids as antioxidants. Journal of Natural Products, 63, 1035-1042. https://doi.org/10.1021/np9904509.

Chaudhari G., Mahajan R. (2015) Comparative antioxidant activity of twenty traditional Indian medicinal plants and its correlation with total flavonoid and phenolic content. International Journal of Pharmaceutical Sciences Review and Research, 30(20), 105-111.

Kim H., Choi H. K., Moon J. Y., Kim Y. S., Mosaddik A., Cho S. K. (2011) Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content. Journal of Food Science, 76, C38-C45. https://doi.org/10.1111/j.1750-3841.2010.01908.x.

Maynard S., Fang E. F., Scheibye-Knudsen M., Croteau D. L., Bohr V. A. (2015) DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harbor Perspectives in Medicine, 5, a025130. https://doi.org/10.1101/cshperspect.a025130.

Kumbhare M., Sivakumar T., Udavant P., Dhake A., Surana A. (2012) In vitro antioxidant activity, phytochemical screening, cytotoxicity and total phenolic content in extracts of Caesalpinia pulcherrima (Caesalpiniaceae) pods. Pakistan Journal of Biological Sciences, PJBS 15, 325-332. https://doi.org/10.3923/pjbs.2012.325.332.

Rao Y. K., Fang S-H., Tzeng Y-M. (2005) Anti-inflammatory activities of flavonoids isolated from Caesalpinia pulcherrima. Journal of Ethnopharmacology, 100, 249-253. https://doi.org/10.1016/j.jep.2005.02.039.

Zhang L., Lin W., Chen X., Wei G., Zhu H., Xing S. (2019) Tanshinone IIA reverses EGF-and TGF-β1-mediated epithelial-mesenchymal transition in HepG2 cells via the PI3K/Akt/ERK signaling pathway. Oncology Letters, 18, 6554-6562.

Nogueira M. L., Lima E. J. d., Adrião A. A., Fontes S. S., Silva V. R., Santos L. d. S., et al. (2020) Cyperus articulatus L. (Cyperaceae) rhizome essential oil causes cell cycle arrest in the G2/M phase and cell death in HepG2 cells and inhibits the development of tumors in a xenograft model. Molecules, 25, 2687. https://doi.org/10.3390/molecules25112687.

Clarke P. G. Clarke S. (1996) Nineteenth century research on naturally occurring cell death and related phenomena. Anatomy Embryology, 193, 81-99.

Sun E. J., Wankell M., Palamuthusingam P., McFarlane C., Hebbard L. (2021) Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicines, 9, 1639. https://doi.org/10.3390/biomedicines9111639.

Chen X., Duan N., Zhang C., Zhang W. (2016) Survivin and tumorigenesis: molecular mechanisms and therapeutic strategies. Journal of Cancer, 7, 314. https://doi.org/10.7150/jca.13332.

Cheng L., Luo S., Jin C., Ma H., Zhou H., Jia L. (2013) FUT family mediates the multidrug resistance of human hepatocellular carcinoma via the PI3K/Akt signaling pathway. Cell Death Disease, 4, e923-e923.

Brentnall M., Rodriguez-Menocal L., De Guevara R. L., Cepero E., Boise L. H. (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biology, 14, 1-9. https://doi.org/10.1186/1471-2121-14-32.

Carrasco R. A., Stamm N. B., Marcusson E., Sandusky G., Iversen P., Patel B. K. (2011) Antisense inhibition of survivin expression as a cancer therapeutic. Molecular Cancer Therapeutics, 10, 221-232. https://doi.org/10.1158/1535-7163.MCT-10-0756.

Ul Bari W., Zahoor M., Zeb A., Sahibzada M. U. K., Ullah R., Shahat A. A., et al. (2019) Isolation, pharmacological evaluation and molecular docking studies of bioactive compounds from Grewia optiva. Drug Design, Development Therapy, 3029-3036. https://doi.org/10.2147/DDDT.S220510.

Lapierre J-M., Eathiraj S., Vensel D., Liu Y., Bull C. O., Cornell-Kennon S., et al. (2016) Discovery of 3-(3-(4-(1-Aminocyclobutyl) phenyl)-5-phenyl-3 H-imidazo [4, 5-b] pyridin-2-yl) pyridin-2-amine (ARQ 092): An orally bioavailable, selective, and potent allosteric AKT inhibitor. Journal of Medicinal Chemistry, 59, 6455-6469. https://doi.org/10.1021/acs.jmedchem.6b00619.

Downloads

Published

30-12-2025

How to Cite

Tu, K. T., Tran, K. C., Luong, H. N., Nguyen, H. T. A., Nguyen, T. L., Pham, M. Q., … Pham, T. H. H. (2025). Anticancer properties of Cyperus amuricus: In vitro and in silico studies targeting HEPG2 liver cancer cells via the Akt/survivin/Bcl-2 signaling pathway. Vietnam Journal of Biotechnology, 23(4), 489–506. https://doi.org/10.15625/vjbt-22415

Issue

Section

Articles

Funding data

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.