Effects of collagenase incubation time on the isolation of stromal vascular fraction and viability of mesenchymal stem cells
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-22102Keywords:
Adipose-derived stem cells, collagenase, mesenchymal stem cells, regenerative medicine stromal vascular fractionAbstract
There are three groups of potential stem cells that are widely used in regenerative medicine in clinical practice: hematopoietic stem cells, mesenchymal stem cells, and epithelial stem cells. Among them, adipose-derived mesenchymal stem cells (ASCs) are very common in the human body and can be easily obtained without causing major damage to the body. The use of human adipose-derived stromal vascular fraction (SVF) therapy has increased in recent years. SVF is a rich source of mesenchymal stem cells (MSCs) used in regenerative medicine. This study evaluated the effect of collagenase incubation time on the efficiency of SVF isolation and MSC viability. The aim of the study was to optimize the SVF isolation time to obtain MSCs with a high survival rate in clinical applications while ensuring the stemness and differentiation ability of MSCs after isolation. Collagenase digestion at different time points (60, 120, and 180 minutes) was compared, measuring MSC yield and viability via flow cytometry and differentiation assays. Results indicated that 120 minutes of collagenase treatment provided optimal MSC yield and cell viability, demonstrating significant differentiation potential, making this time point ideal for clinical applications.
Downloads
References
Deeb S. S., and Peng R. L. (1989). Structure of the human lipoprotein lipase gene. Biochemistry, 28, 4131-4135. https://doi.org/10.1021/bi00436a001
Hahn H. M., Jeong K. S., Yoo B. Y., Park J. H., Jung H. J., and Lee I. J. (2018). Effect of the bowl structure in an automated Cell-Isolation device on stromal vascular fraction’s isolation yield. Journal of Medical Devices, Transactions of the ASME, 124. https://doi.org/10.1115/1.4041191
Horwitz E., Le Blanc K., Dominici M., Mueller I., Slaper-Cortenbach I., Marini F. C., et al (2005). Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy, 7, 393-395. https://doi.org/10.1080/14653240500319234
Kien T. T., An D. P., Thanh T. T., Tien T. V., Anh H. V. N., and Nam T. N. (2024). Evaluating the effects of different culture media on the characteristics and growth of mesenchymal stem cells. TNU Journal of Science and Technology, 229(13), 95-101. https://doi.org/10.34238/tnu-jst.10494
Lasfargues E. Y., & Moore D. H. (1971). A method for the continuous cultivation of mammary epithelium. In Vitro, 71, 21-25. https://doi.org/10.1007/BF02619001/METRICS
Lee S. J., Lee C. R., Kim K. J., Ryu Y. H., Kim E., Han Y. N., et al (2020). Optimal condition of isolation from an adipose tissue-derived stromal vascular fraction for the development of automated systems. Tissue Engineering and Regenerative Medicine, 17, 203–208. https://doi.org/10.1007/s13770-019-00238-3
Leslie S. K., Cohen D. J., Sedlaczek J., Pinsker E. J., Boyan B. D., and Schwartz Z. (2013). Controlled release of rat adipose-derived stem cells from alginate microbeads. Biomaterials, 34(33), 8172-8184. https://doi.org/10.1016/J.BIOMATERIALS.2013.07.017
Livak K. J., and Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
Ogando C. R., Marabino G. A., and Yang Y. H. K. (2019). Adipogenic and osteogenic differentiation of in vitro aged human mesenchymal stem cells. Methods in Molecular Biology, 2045, 107–117. https://doi.org/10.1007/7651_2018_197
Pilgaard L., Lund P., Rasmussen J. G., Fink T., and Zachar V. (2008). Comparative analysis of highly defined proteases for the isolation of adipose tissue-derived stem cells. Regenerative Medicine, 3, 705–715. https://doi.org/10.2217/17460751.3.5.705
Pittenger M. F., Mackay A. M., Beck S. C., Jaiswal R. K., Douglas R., Mosca J. D., et al (1999). Multilineage potential of adult human mesenchymal stem cells. Science New York NY, 284(5411), 143-147. https://doi.org/10.1126/SCIENCE.284.5411.143
Senesi L., De Francesco F., Farinelli L., Manzotti S., Gagliardi G., Papalia G. F., et al. (2019). Mechanical and enzymatic procedures to isolate the stromal vascular fraction from adipose tissue: Preliminary results. Frontiers in Cell and Developmental Biology, 7, 88. https://doi.org/10.3389/FCELL.2019.00088
Taghizadeh R. R., Cetrulo K. J., and Cetrulo C. L. (2018). Collagenase impacts the quantity and quality of native mesenchymal stem/stromal cells derived during processing of umbilical cord tissue. Cell Transplant, 27, 181-193. https://doi.org/10.1177/0963689717744787
Thanh T. T., Kien T. T., Daeyong K., and Nam T. N. (2024). Bioactive peptides SL-13R and KS-13 enhance human adipose-derived mesenchymal stem cell proliferation in vitro. Bangladesh Journal of Pharmacology, 19, 2. https://doi.org/10.3329/bjp.v19i2.72739
Thiemann E., Schwaerzer G. K., Evangelakos I., Fuh M. M., Jaeckstein M. Y., Behrens J., et al (2022). Role of endothelial cell lipoprotein lipase for brown adipose tissue lipid and glucose handling. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.859671
Zuk P. A., Zhu M., Ashjian P., De Ugarte D. A., Huang J. I., Mizuno H., et al (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 1312, 4279-4295. https://doi.org/10.1091/MBC.E02-02-0105
Downloads
Published
How to Cite
Issue
Section
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers TĐTBG0.02/21-23
