The distribution of antibiotic resistance genes in plasmids and genomic islands of Acinetobacter baumannii through whole genome sequencing

Thi Bich Thuy Vo, Thi Hop Tran, Thi Diem Nguyen, Thi Thu Hue Huynh, Thi Nguyen Binh Le, Ngoc Minh Nghiem
Author affiliations

Authors

  • Thi Bich Thuy Vo \(^1\) Institute of Biology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do Cau Giay, Hanoi, Vietnam
  • Thi Hop Tran \(^1\) Institute of Biology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do Cau Giay, Hanoi, Vietnam
  • Thi Diem Nguyen \(^1\) Institute of Biology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do Cau Giay, Hanoi, Vietnam
  • Thi Thu Hue Huynh \(^1\) Institute of Biology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do Cau Giay, Hanoi, Vietnam
  • Thi Nguyen Binh Le \(^1\) Institute of Biology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do Cau Giay, Hanoi, Vietnam
  • Ngoc Minh Nghiem \(^\) Institute of Biology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do Cau Giay, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/vjbt-21721

Keywords:

Acinetobacter baumannii, genomic island, plasmid, resistance island (REI), whole-genome sequencing

Abstract

Acinetobacter baumannii is a prominent pathogen in hospital environments, capable of causing various serious infections. The opportunistic pathogen A. baumannii contains variants of the AbaR genomic islands, which enhance its multidrug resistance capabilities. Whole genome sequencing (WGS) identified 36 plasmids across 30 samples, with 10 plasmids present in at least 5 samples; notably, 19 out of 36 plasmids contain antibiotic resistance genes. Plasmid AE271 was found in 18 samples that harbored important beta-lactam resistance genes, including blaOXA-91, blaOXA-120, blaOXA-67, and blaOXA-66. Both plasmids AC163 and AE689 have carried blaOXA-23, a commonly found resistance gene in A. baumannii. Plasmid AC715 was present in 10 samples, including a variety of resistance genes such as blaOXA-23, aph(3')-VIb, and sul2. Plasmid AC237, identified in 9 samples, also contains multiple resistance genes, including sul1, armA, and msr(E), reflecting its diversity in drug resistance. Some plasmids were classified as "novel," containing the blaOXA-23 gene. Integrative antibiotic resistance elements (REIs) such as AbaR4 and Tn6167 confer carbapenem resistance, an essential antibiotic group for treating A. baumannii infections. Several REIs, including AbaR22, Tn6166, and delta-AbaR25, exhibit antibiotic resistance, including aminoglycosides, tetracyclines, sulfonamides, and beta-lactams. This finding underscores the complex genetics of plasmids in A. baumannii and their role in the spread of antibiotic resistance. The study also indicates that genomic islands may play a significant role in spreading antibiotic resistance genes, providing deeper insights into the diversity and genetic organization of RIs in A. baumannii populations that have yet to be explored.

Downloads

Download data is not yet available.

References

Bi, D., Xie, R., Zheng, J., Yang, H., Zhu, X., Ou, H. Y., et al. (2019). Large-scale identification of AbaR-type genomic islands in Acinetobacter baumannii reveals diverse insertion sites and clonal lineage-specific antimicrobial resistance gene profiles. Antimicrobial Agents and Chemotherapy, 63(4), e02526-18. https://doi.org/10.1128/AAC.02526-18

Blackwell, G. A., Holt, K. E., Bentley, S. D., Hsu, L. Y., and Hall, R. M. (2017). Variants of AbGRI3 carrying the armA gene in extensively antibiotic-resistant Acinetobacter baumannii from Singapore. Journal of Antimicrobial Chemotherapy, 72(4), 1031–1039. https://doi.org/10.1093/jac/dkw542

Cameranesi, M. M., Morán-Barrio, J., Limansky, A. S., Repizo, G. D., and Viale, A. M. (2018). Site-specific recombination at xerc/d sites mediates the formation and resolution of plasmid co-integrates carrying a blaoxa-58- and tnapha6-resistance module in acinetobacter baumannii. Frontiers in Microbiology, 9, 66. https://doi.org/10.3389/fmicb.2018.00066

Chan, A. P., Choi, Y., Clarke, T. H., Brinkac, L. M., White, R. C., Jacobs, M. R., et al. (2020). AbGRI4, a novel antibiotic resistance island in multiply antibiotic-resistant Acinetobacter baumannii clinical isolates. Journal of Antimicrobial Chemotherapy, 75(10), 2760–2768. https://doi.org/10.1093/jac/dkaa266

Da Silva, G. J., and Domingues, S. (2016). Insights on the horizontal gene transfer of carbapenemase determinants in the opportunistic pathogen Acinetobacter baumannii. Microorganisms, 4(3), 29. https://doi.org/ 10.3390/microorganisms4030029

Hamed, S. M., Hussein, A. F. A., Al-Agamy, M. H., Radwan, H. H., and Zafer, M. M. (2022). Genetic configuration of genomic resistance islands in Acinetobacter baumannii clinical isolates from Egypt. Frontiers in Microbiology, 13, 878912. https://doi.org/10.3389/fmicb.2022.878912

Hamidian, M., Ambrose, S. J., Blackwell, G. A., Nigro, S. J., and Hall, R. M. (2021). An outbreak of multiply antibiotic-resistant ST49:ST128:KL11:OCL8 Acinetobacter baumannii isolates at a Sydney hospital. Journal of Antimicrobial Chemotherapy, 76(4), 893–900. https://doi.org/10.1093/jac/dkaa553

Hamidian, M., and Hall, R. M. (2017). Origin of the AbGRI1 antibiotic resistance island found in the comM gene of Acinetobacter baumannii GC2 isolates. Journal of Antimicrobial Chemotherapy, 72(10), 2944–2947. https://doi.org/10.1093/jac/dkx206

Hsu, L. Y., Apisarnthanarak, A., Khan, E., Suwantarat, N., Ghafur, A., and Tambyah, P. A. (2016). Carbapenem-Resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clinical Microbiology Reviews, 30(1), 1–22. https://doi.org/10.1128/CMR.masthead.30-1

Hua, X., Moran, R. A., Xu, Q., He, J., Fang, Y., Zhang, L., et al. (2021). Acquisition of a genomic resistance island (AbGRI5) from global clone 2 through homologous recombination in a clinical Acinetobacter baumannii isolate. Journal of Antimicrobial Chemotherapy, 76(1), 65–69. https://doi.org/10.1093/jac/dkaa389

Hujer, A. M., Higgins, P. G., Rudin, S. D., Buser, G. L., Marshall, S. H., Xanthopoulou, K., et al. (2017). Nosocomial Outbreak of Extensively Drug-Resistant Acinetobacter baumannii Isolates Containing blaOXA-237 Carried on a Plasmid. Antimicrobial Agents and Chemotherapy, 61(11), e00797-17. https://doi.org/10.1128/AAC.00797-17

Ibrahim, S., Al-Saryi, N., Al-Kadmy, I. M. S., and Aziz, S. N. (2021). Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Molecular Biology Reports, 48(10), 6987–6998. https://doi.org/10.1007/s11033-021-06690-6

Li, H., Liu, F., Zhang, Y., Wang, X., Zhao, C., Chen, H., et al. (2015). Evolution of carbapenem-resistant Acinetobacter baumannii revealed through whole-genome sequencing and comparative genomic analysis. Antimicrobial Agents and Chemotherapy, 59(2), 1168–1176. https://doi.org/10.1128/AAC.04609-14

Mosqueda N, Gato E, Roca I, López M, de Alegría CR, Fernández Cuenca F, et al. (2014) Characterization of plasmids carrying the blaOXA-24/40 carbapenemase gene and the genes encoding the AbkA/AbkB proteins of a toxin/antitoxin system. Journal of Antimicrobial Chemotherapy 69: 2629-33. https://doi.org/10.1093/jac/dku179

Naderi, G., Asadian, M., Khaki, P. A., Salehi, M., Abdollahi, A., and Douraghi, M. (2023). Occurrence of Acinetobacter baumannii genomic resistance islands (AbGRIs) in Acinetobacter baumannii strains belonging to global clone 2 obtained from COVID-19 patients. BMC Microbiology, 23(1), 234. https://doi.org/10.1186/s12866-023-02961-3

Naderi, G., Asadian, M., Seifi, A., Ghourchian, S., Talebi, M., Rahbar, M., et al. (2023). Dissemination of the Acinetobacter baumannii isolates belonging to global clone 2 containing AbGRI resistance islands in a referral hospital. Microbiology spectrum, 11(5), e0537322. Advance Online Publication. https://doi.org/10.1128/spectrum.05373-22

Papazachariou, A., Tziolos, R. N., Karakonstantis, S., Ioannou, P., Samonis, G., and Kofteridis, D. P. (2024). Treatment strategies of colistin resistance Acinetobacter baumannii infections. Antibiotics (Basel, Switzerland), 13(5), 423. https://doi.org/10.3390/antibiotics13050423

Nghiem N. M., Tran T. H., Nguyen T. D., and Vo T. B. T. (2024.) An investigation of characterize antibiotic resistance genes and virulence genes of Acinetobacter baumannii using advanced next-generation sequencing. TNU Journal of Science and Technology 230: 137 - 143

Wang, Z., Li, H., Zhang, J., Wang, X., Zhang, Y., and Wang, H. (2022). Identification of a novel plasmid-mediated tigecycline resistance-related gene, tet(Y), in Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 77(1), 58–68. https://doi.org/10.1093/jac/dkab375

Wibberg, D., Salto, I. P., Eikmeyer, F. G., Maus, I., Winkler, A., Nordmann, P., et al. (2018). Complete genome sequencing of Acinetobacter baumannii strain K50 discloses the large conjugative plasmid pK50a encoding carbapenemase OXA-23 and extended-spectrum β-lactamase GES-11. Antimicrobial Agents and Chemotherapy, 62(5), e00212-18. https://doi.org/10.1128/AAC.00212-18

Published

30-06-2025

How to Cite

Vo, T. B. T., Tran, T. H., Nguyen, T. D., Huynh, T. T. H., Le, T. N. B., & Nghiem, N. M. (2025). The distribution of antibiotic resistance genes in plasmids and genomic islands of <i>Acinetobacter baumannii</i> through whole genome sequencing. Vietnam Journal of Biotechnology, 23(2), 239–250. https://doi.org/10.15625/vjbt-21721

Issue

Section

Articles

Funding data

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.