In vitro antifungal activity of chitosan derived from shrimp co-products against pathogenic fungi isolated in Vietnam
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-21644Keywords:
Antifungal activity, chitosan, disease control, postharvest preservation, shrimp wasteAbstract
The global overuse of antibiotics and agrochemicals in Vietnam leads to antibiotic resistance, health risks, and environmental damage. This study evaluates in vitro antifungal properties of different types of shrimp waste-derived chitosan against Vietnamese agricultural fungi as a sustainable alternative to chemical fungicides. Several pathogenic microbe strains were isolated and identified by morphological and molecular gene sequencing: Neoscytalidium dimidiatum causing brown spot on dragon fruit; Fusarium fujikuroi & Fusarium subglutinans causing banana crown rot; Fusarium oxysporum & Fusarium odoratissimum causing banana stem rot; Lasiodiplodia theobromae causing fruit rot & Colletotrichum queenslandicum causing anthracnose on passion fruit; Fusarium equiseti & Fusarium napiforme causing swollen swim bladder on striped catfish. The antifungal properties of several chitosan types were investigated following the inhibition of the fungal mycelial growth method. CTIC15 & OLIC25 demonstrated significant fungal growth inhibition from 90% to 100% at 0.328 g/L to 0.625 g/L for all isolated fungal strains. Chitooligosaccharide COSL02 exhibited an antifungal effect against L. theobromae, F. oxysporum, N. dimidiatum, and F. odoratissimum with inhibition rates from 53.11 ± 2.74% to 100 ± 0.00% at 0.438 g/L to 0.876 g/L. Low molecular weight LV01 displayed broad-spectrum antifungal efficacy, excluding F. subglutinans, with inhibition rates from 74.11 ± 10.36% to 100 ± 0.00% at 0.2 g/L, and above 42.08 ± 5.87% at 0.1 g/L. Medium molecular weight MV01 shared comparable antifungal potency to LV01, except for F. equiseti and N. dimidiatum, with inhibition rates from above 74.09 ± 7.09% to 100 ± 0.00% at 0.2 g/L, and above 58.77 ± 0.87% at 0.1 g/L. This study suggested chitosan (shrimp waste) could serve as an effective and sustainable alternative to chemical fungicides in controlling pathogenic microbes.
Downloads
References
Abou-zeid A. M., Amer S. M., Elhaitty M., Ali E. H., and Ghada M. (2020). Effect of chitosan on Fusarium spp. isolated from the soil of the Nile Delta region in Egypt. Delta Journal of Science. 42, 82-89. http://doi.org/10.21608/djs.2020.142847
Akter J., Jannat R., Hossain M. M., Ahmed J. U., and Rubayet M. T. (2018). Chitosan for plant growth promotion and disease suppression against anthracnose in chilli. International Journal of Environment, Agriculture and Biotechnology. 3, 0806-0817. http://doi.org/10.22161/ijeab/3.3.13
Al‐Hetar M. Y., Zainal Abidin M. A., Sariah M., and Wong M. Y. (2011). Antifungal activity of chitosan against Fusarium oxysporum f. sp. cubense. Journal of Applied Polymer Science. 120, 2434-2439. http://doi.org/10.1002/app.33455
Ali S. R., Fradi A. J., and Al-Aaraji A. M. (2017). Effect of some physical factors on growth of five fungal species. European Academic Research. 2, 1069-1078.
Alvarez-Carvajal F., Gonzalez-Soto T., Armenta-Calderón A. D., Méndez Ibarra R., Esquer-Miranda E., Juarez J., et al. (2020). Silver nanoparticles coated with chitosan against Fusarium oxysporum causing the tomato wilt. Biotecnia. 22, 73-80. http://doi.org/10.18633/biotecnia.v22i3.952
Apai W., Sardsud V., Boonprasom P., and Sardsud U. (2008). Antifungal activity of chitosan coating and its components on Lasiodiplodia theobromae in longan. Europe-Asia Symposium on Quality Management in Postharvest Systems-Eurasia. Acta Horticulturae. 804, 235-242. http://doi.org/10.17660/ActaHortic.2008.804.31
Bautista-Baños S., Romanazzi G., and Jiménez-Aparicio A. (2016). Chitosan in the Preservation of Agricultural Commodities. Cambridge, MA, USA, Academic Press. Elsevier. 251-275. http://doi.org/10.1016/C2014-0-03033-X
Bouhenna M., Salah R., Bakour R., Drouiche N., Abdi N., Grib H., et al. (2015). Effects of chitin and its derivatives on human cancer cells lines. Environmental Science and Pollution Research. 2015, 15579-15586. http://doi.org/10.1007/s11356-015-4712-3
Burgess L. W., Phan H. T., Knight T. E., and Tesoriero L. (2008). Diagnostic Manual for Plant Diseases in Vietnam. Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia. e49696.
Cannon S., Kay W., Kilaru S., Schuster M., Gurr S. J., and Steinberg G. (2022). Multi-site fungicides suppress banana Panama disease, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4. PLoS Pathogens. 18, e1010860. http://doi.org/10.1371/journal.ppat.1010860
Carrique-Mas J. J., Choisy M., Van Cuong N., Thwaites G., and Baker S. (2020). An estimation of total antimicrobial usage in humans and animals in Vietnam. Antimicrobial Resistance & Infection Control. 9, 1-6. http://doi.org/10.1186/s13756-019-0671-7
Cazón P., and Vázquez M. (2019). Applications of chitosan as food packaging materials. Sustainable Agriculture Reviews 36: Chitin and Chitosan: Applications in Food, Agriculture, Pharmacy, Medicine and Wastewater Treatment (Cham, Switzerland: Springer). http://doi.org/10.1007/978-3-030-16581-93
Chau N. D. G., Chau L. D. B., and Ngan L. T. T. (2019). Knowledge, attitudes, and practices on pesticide usage of vegetable farmers in Thua Thien Hue Province. Can Tho University Journal of Science. 55, 35-44. https//doi.org/10.22144/ctu.jvn.2019.106
Dash M., Chiellini F., Ottenbrite R. M., and Chiellini E. (2011). Chitosan - A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science. 36, 981-1014. http://doi.org/10.1016/j.progpolym sci.2011.02.001
De Silva D. D., Ades P. K., Crous P. W., and Taylor P. W. J. (2017). Colletotrichum species associated with chili anthracnose in Australia. Plant Pathology. 66, 254-267. http://doi.org/10.1111/ppa.12572
Du B. D., Dung L. T. K., Khoa V. N. D., and Thang N. D. (2015). Chitinase-induced resistance against Neoscytalidium dimidiatum on dragon trees: the effect of oligochitosan prepared by the heterogeneous degradation of chitosan with H2O2 under hydrothermal conditions. Vietnam Journal of Chemistry. 53, 161-165. http://doi.org/10.15625/0866-7144.2015-00107
Duc P. M., Thy D. T. M., Hatai K., and Muraosa Y. (2015). Infection of striped catfish (Pangasianodon hypophthalmus) in Viet Nam caused by the fungus Fusarium incarnatum-equiseti. European Association of Fish Pathologists e.V. 35, 208-216.
Felipe V., Breser M. L., Bohl L. P., da Silva E. R., Morgante C. A., Correa S. G., et al. (2019). Chitosan disrupts biofilm formation and promotes biofilm eradication in Staphylococcus species isolated from bovine mastitis. International Journal of Biological Macromolecules. 126, 60-67. http://doi.org/10.1016/j.ijbiomac.2018.12.159
Guarnaccia V., Aiello D., Polizzi G., Crous P. W., and Sandoval-Denis M. (2019). Soilborne diseases caused by Fusarium and Neocosmospora spp. on ornamental plants in Italy. Phytopathologia Mediterranea. 58, 127-138. http://doi.org/10.13128/PhytopatholMediterr-23587
Hernandez-Lauzardo A. N., Bautista-Baños S., Velazquez-Del Valle M. G., Méndez-Montealvo M. G., Sánchez-Rivera M. M., and Bello-Perez L. A. (2008). Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. Carbohydrate Polymers. 73, 541-547. http://doi.org/10.1016/j.carbpol.2007.12.020
Hua C., Li Y., Wang X., Kai K., Su M., Zhang D., et al. (2019). The effect of low and high molecular weight chitosan on the control of gray mold (Botrytis cinerea) on kiwifruit and host response. Scientia Horticulturae. 246, 700-709. http://doi.org/10.1016/j.scienta.2018.11.038
Ke C. L., Deng F. S., Chuang C. Y., and Lin C. H. (2021). Antimicrobial actions and applications of chitosan. Polymers. 13, 904. http://doi.org/10.3390/polym13060904
Kim S. W., Park J. K., Lee C. H., Hahn B. S., and Koo J. C. (2016). Comparison of the antimicrobial properties of chitosan oligosaccharides (COS) and EDTA against Fusarium fujikuroi causing rice bakanae disease. Current Microbiology. 72, 496-502. http://doi.org/10.1007/s00284-015-0973-9
Lan G. B., He Z. F., Xi P. G., and Jiang Z. D. (2012). First report of brown spot disease caused by Neoscytalidium dimidiatum on Hylocereus undatus in Guangdong, Chinese Mainland. Plant Disease. 96, 1702-1702. http://doi.org/10.1094/PDIS-07-12-0632-PDN
Li X. F., Feng X. Q., Yang S., Wang T. P., and Su Z. X. (2008). Effects of molecularweight and concentration of chitosan on antifungal activity against Aspergillus niger. Iranian Polymer Journal. 17, 843-852. http://sid.ir/paper/555011/en
Long L. T., Nguyen T. T. T., Nguyen H. T., Tran T. T. H., and Nguyen M. H. (2014). Study on antifungal ability of water-soluble chitosan against green mould infection in harvested oranges. Journal of Agricultural Science (Toronto). 6, 205-213. http://doi.org/10.5539/jas.v6n8p205
Long L. T., Tan L. V., Boi V. N., and Trung T. S. (2018). Antifungal activity of water‐soluble chitosan against Colletotrichum capsici in postharvest chili pepper. Journal of Food Processing and Preservation. 42, e13339. http://doi.org/10.1111/jfpp.13339
Long L. T., Trung S. T., and Boi V. N. (2015). Optimization of hydrolysis to produce water-soluble chitosan and its antifungal effect on postharvest anthracnose in mango. Acta Horticulturae. 1088, 371-376. http://doi.org/10.17660/ActaHortic.2015.1088.64
Lopez-Moya F., Suarez-Fernandez M., and Lopez-Llorca L. V. (2019). Molecular mechanisms of chitosan interactions with fungi and plants. International Journal of Molecular Sciences. 20, 332. http://doi.org/10.3390/ijms20020332
Manigandan V., Karthik R., Ramachandran S., and Rajagopal S. (2018). Chitosan applications in food industry. Biopolymers for Food Design. Academic Press. 20, 469-491. http://doi.org/10.1016/B978-0-12-811449-0.00015-3
Manyi-Loh C., Mamphweli S., Meyer E., and Okoh A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. 23, 795. http://doi.org/10.3390/molecules23040795
Mejdoub‐Trabelsi B., Touihri S., Ammar N., Riahi A., and Daami‐Remadi M. (2020). Effect of chitosan for the control of potato diseases caused by Fusarium species. Journal of Phytopathology. 168, 18-27. http://doi.org/10.1111/jph.12847
Meng X., Yang L., Kennedy J. F., and Tian S. (2010). Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers. 81, 70-75. http://doi.org/10.1016/j.carpol.2010.01.057
Muñoz Z., Moret A., and Garcés S. (2009). Assessment of chitosan for inhibition of Colletotrichum sp. on tomatoes and grapes. Crop Protection. 28, 36-40. http://doi.org/10.1016/j.cropro.2008.08.015
Mustafa H. K., Anwer S. S., and Zrary T. J. (2023). Influence of pH, agitation speed, and temperature on growth of fungi isolated from Koya, Iraq. Kuwait Journal of Science. 50, 657-664. http://doi.org/10.1016/j.kjs.2023.02.036
Nga N. T. T., and Bac N. X. (2021). Effects of chitosan-plant extract coatings on the postharvest quality of mango fruits (Mangifera indica) with anthracnose disease. Vietnam Journal of Agricultural Sciences. 4, 1293-1302. http://doi.org/10.31817/vjas.2021.4.4.08
No H. K., and Meyers S. P. (2000). Application of chitosan for treatment of wastewaters. Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews. 163, 1-27. http://doi.org/10.1007/978-1-4757-6429-11
Oliveira P. D. L., de Oliveira K. Á. R., dos Santos Vieira W. A., Câmara M. P. S., and de Souza E. L. (2018). Control of anthracnose caused by Colletotrichum species in guava, mango and papaya using synergistic combinations of chitosan and Cymbopogon citratus (DC ex Nees) Stapf. essential oil. International Journal of Food Microbiology. 266, 87-94. http://doi.org/10.1016/j.ijfoodmicro.2017.11.018
Palma-Guerrero J., Huang I. C., Jansson H. B., Salinas J., Lopez-Llorca L. V., and Read N. D. (2009). Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner. Fungal Genetics and Biology. 46, 585-594. http://doi.org/10.1016/j.fgb.2009.02.010
Parthiban F., Balasundari S., Gopalakannan A., Rathnakumar K., and Felix S. (2017). Comparison of the quality of chitin and chitosan from shrimp, crab and squilla waste. Current World Environment. 12, 670-677. http://doi.org/10.12944/CWE.12.3.18
Pham M. D., Dang T. M. T., and Tran N. T. (2015). Fungal species isolated from water and striped catfish (Pangasianodon hypophthalmus) farmed in earthen ponds in the Mekong Delta of Viet Nam. International Journal of Science, Engineering and Technology. 3, 1164-1171. http://doi.org/10.2348/ijset09151164
Ramos-Guerrero A., González-Estrada R. R., Romanazzi G., Landi L., and Gutiérrez-Martínez P. (2020). Effects of chitosan in the control of postharvest anthracnose of soursop (Annona muricata) fruit. Revista Mexicana de Ingeniería Química. 19, 99-108. http://doi.org/10.24275/rmiq/Bio527
Ren J., Tong J., Li P., Huang X., Dong P., and Ren M. (2021). Chitosan is an effective inhibitor against potato dry rot caused by Fusarium oxysporum. Physiological and Molecular Plant Pathology. 113, e101601. http://doi.org/10.1016/j.pmpp.2021.101601
Rieger M. M. (2009). Cosmetics. In John Wiley & Sons, Inc. (Ed.) Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. http://doi.org/10.1002/0471238961.0315191318090507.a01.pub2
Schreinemachers P., Grovermann C., Praneetvatakul S., Heng P., Nguyen T. T. L., Buntong B., et al. (2020). How much is too much? Quantifying pesticide overuse in vegetable production in Southeast Asia. Journal of Cleaner Production. 244, e118738. http://doi.org/10.1016/j.jclepro.2019.118738
Sharp R. G. (2013). A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy. 3, 757-793. http:// doi.org/10.3390/agronomy3040757
Sheikh M., Mehnaz S., and Sadiq M. B. (2021) Prevalence of fungi in fresh tomatoes and their control by chitosan and sweet orange (Citrus sinensis) peel essential oil coating. Journal of the Science of Food and Agriculture. 101, 6248-6257. https://doi.org/10.1002/jsfa.11291
Wang Y., Li B., Zhang X., Peng N., Mei Y., and Liang Y. (2017). Low molecular weight chitosan is an effective antifungal agent against Botryosphaeria sp. and preservative agent for pear (Pyrus) fruits. International Journal of Biological Macromolecules. 95, 1135-1143. http://doi.org/10.1016/j.ijbiomac.2016.10.105
Xing K., Zhu X., Peng X., and Qin S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development. 2015, 569-588. http://doi.org/10.1007/s13593-014-0252-3
Younes I., Sellimi S., Rinaudo M., Jellouli K., and Nasri M. (2014). Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. International Journal of Food Microbiology. 185, 57-63. http://doi.org/ 10.1016/j.ijfoodmicro.2014.04.029
Zahid N., Maqbool M., Siddiqui Y., Manickam S., and Ali A. (2015). Regulation of inducible enzymes and suppression of anthracnose using submicron chitosan dispersions. Scientia Horticulturae. 193, 381-388. http://doi.org/10.1016/j.scienta.2015.07.014