DNA isolation for PCR amplification and molecular identification of marine sponges collected in Con Dao Islands, Vietnam

Nguyen Quang Hung, Nguyen Chi Mai, Pham Thi Hoe, Hoang Dinh Chieu, Luu Xuan Hoa, Nguyen Tuong Van, Le Quang Trung, Vu Huong Giang, Ninh Khac Ban, Le Quynh Lien, Tran My Linh
Author affiliations

Authors

  • Nguyen Quang Hung Graduate University of Science and Technology, VAST; VNTEST Institute for Quality Testing and Inspection
  • Nguyen Chi Mai Institute of Chemistry, VAST
  • Pham Thi Hoe Institute of Chemistry, VAST
  • Hoang Dinh Chieu Research Institute for Marine Fisheries
  • Luu Xuan Hoa Research Institute for Marine Fisheries
  • Nguyen Tuong Van VNTEST Institute for Quality Testing and Inspection
  • Le Quang Trung VNTEST Institute for Quality Testing and Inspection
  • Vu Huong Giang Institute of Chemistry, VAST
  • Ninh Khac Ban Institute of Chemistry, VAST
  • Le Quynh Lien Institute of Chemistry, VAST
  • Tran My Linh Institute of Chemistry, VAST

DOI:

https://doi.org/10.15625/2615-9023/22947

Keywords:

Marine sponges, Con Dao Islands, DNA isolation, molecular identification, cytochrome c oxidase subunit I

Abstract

Molecular approaches based on DNA sequences have become increasingly indispensable in modern taxonomy, particularly for taxa with few or ambiguous diagnostic morphological characters, such as sponges. However, genomic DNA isolation from sponges is often hindered by abundant secondary metabolites. Here, we optimized a CTAB-based DNA extraction protocol by adjusting the concentrations of CTAB, SDS, and proteinase K. The optimized extraction buffer (4% CTAB, 1% SDS, and 5 µg/mL proteinase K) substantially improved DNA yield and purity. Applied to six sponge specimens from the Con Dao Islands, the protocol yielded DNA concentrations exceeding 200 ng/µL from 100–300 mg of tissue, with purity ratios indicative of high-quality DNA. DNA integrity was confirmed by successful PCR amplification of the mitochondrial cytochrome c oxidase subunit I (COI) gene fragment. Sequence analyses corroborated morphological identifications and enabled species-level assignment of four specimens. Together, these results demonstrate that the optimized extraction protocol provides a reliable and effective approach for obtaining high-quality genomic DNA from sponges, thereby facilitating molecular identification and supporting taxonomic and phylogenetic studies of marine sponges.

Downloads

Download data is not yet available.

References

Akinwole M., Babarinde I., 2019. Assessing Tissue Lysis with Sodium Dodecyl Sulphate for DNA Extraction from Frozen Animal Tissue. Journal of Forensic Research 10: 3

Dat T. T. H., Cuc N. T. K., Cuong P. V., 2018. Molecular taxonomy of some sponges (Demospongiae) using ribosomal (18s rRNA) and partial mitochondrial (COI) genes. Academia Journal of Biology, 40(4): 67−75. https://doi.org/10.15625/2615-9023/v40n4.12705

de Voogd N. J. A., Boury-Esnault B., Cárdenas N., Díaz P. M.-C., Dohrmann M., Downey R., Goodwin C., Hajdu E., Hooper J. N. A., Kelly M., Klautau M., Lim S. C., Manconi R., Morrow C., Pinheiro U., Pisera A. B., Ríos P., Rützler K., Schönberg C., Turner T., Vacelet J., van Soest R. W. M., Xavier J., 2025. World Porifera Database. http://www.marinespecies.org/porifera on 20/04/2025

Doyle J. J., Doyle, J. L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochemical Bulletin, 19 (1): 11−15.

Evans N., Paulay G., 2012. DNA Barcoding Methods for Invertebrates, DNA barcodes: methods and protocols, pp. 47−77.

Furukawa K., Bhavanandan V. P., 1983. Influences of anionic polysaccharides on DNA synthesis in isolated nuclei and by DNA polymerase α: correlation of observed effects with properties of the polysaccharides. Biochim. Biophys. Acta., 740(4): 466−475. https://doi.org/10.1016/ 0167-4781(83)90096-9

Gross-Bellard M., Oudet P., Chambon P., 1973. Isolation of high-molecular-weight DNA from mammalian cells. European Journal of Biochemistry, 36(1): 32–38

Gupta N., 2019. DNA Extraction and Polymerase Chain Reaction. J. Cytol, 36(2): 116−117. https://doi.org/10.4103/ joc.joc_110_18

Hill M. S., Hill A. L., Lopez J., Peterson K. J., Pomponi S., Diaz M. C., Thacker R. W., Adamska M., Boury-Esnault N., Cárdenas P., Chaves-Fonnegra A., Danka E., De Laine B. O., Formica D, Hajdu E, Lobo-Hajdu G, Klontz S, Morrow CC, Patel J, Picton B, Pisani D, Pohlmann D., Redmond N. E., Reed J., Richey S., Riesgo A., Rubin E., Russell Z., Rützler K., Sperling E. A., di Stefano M., Tarver J. E., Collins A. G., 2013. Reconstruction of family-level phylogenetic relationships within Demospongiae (Porifera) using nuclear encoded housekeeping genes. PLoS One, 8(1): e50437. https://doi.org/ 10.1371/journal.pone.0050437

Hooper J. N. A., van Soest R. W. M., 2000. Systema Porifera. A guide to the classification of sponges, New York: Kluwer Academic/Plenum Publishers,

pp. 1810.

Kishor R., Mazumder P. B., Heikrujam J., 2020. The Chemistry Behind Plant DNA Isolation Protocols. In: Boldura O-M, Balta C, Awwad N (eds) Biochemical Analysis Tools - Methods for Bio-Molecules Studies. IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.92206

Langenbruch P.F., 1983. Body structure of marine sponges. Marine Biology 75 (2): 319−325. doi: 10.1007/BF00406018

Lim S. C., Putchakarn S., Thai Q., Wang D., Huang Y., 2016. Inventory of sponge fauna from the Singapore Strait to Taiwan Strait along the western coastline of the South China Sea. Raffles Bulletin of Zoology Supplement, 34: 104−129.

Malentacchi F., Pizzamiglio S., Ibrahim-Gawel H., Pazzagli M., Verderio P., Ciniselli C. M., Wyrich R., Gelmini S., 2016. Data and performances evaluation of the SPIDIA-DNA Pan-European External Quality Assessment: 2nd SPIDIA-DNA laboratory report. Data Brief, 6: 980–984. http://dx.doi.org/10.1016/j.dib.2016.01.062

Maloof A. C., Rose C. V., Beach R., Samuels B. M., Calmet C. C., Erwin D. H., Simons F. J., 2010. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geoscience, 3(9): 653−659. http://dx.doi.org/10.1038/ngeo934

Nguyen Van Chung, Dao Tan Ho, Le Minh Trong, Ton That Thong, Tran Dinh Nam, Nguyen Van Luom, 1978. A review of the preliminary surveys on benthos in Vietnam. Collection of Marine Research Works: 57−72 (In Vietnamese).

Nguyet N., Bau N., 2023. Con Dao’s Positional Resources: Potential and Orientation in Value Promotion. IOP Conference Series: Earth and Environmental Science, 1247(1): 012014. http://dx.doi.org/10.1088/1755-1315/1247/1/012014

Ngwakum B. B., Payne R. P., Teske P. R., Janson L., Kerwath S. E., Samaai T., 2021. Hundreds of new DNA barcodes for South African sponges. Systematics and Biodiversity, 19(7): 747−769. doi: 10.1080/ 14772000.2021.1915896

Pereira L., Cotas J., 2023. Therapeutic Potential of Polyphenols and Other Micronutrients of Marine Origin. Mar. Drugs, 21(6): 323. https://doi.org/ 10.3390/md21060323

Rossmanith P., Röder B., Frühwirth K., Vogl C., Wagner M., 2011. Mechanisms of degradation of DNA standards for calibration function during storage. Appl. Microbiol. Biotechnol. 89(2): 407–417. https://doi.org/10.1007/s00253-010-2943-2

Saenger W. 2013. Chapter 714 - Proteinase K. In: Rawlings ND, Salvesen G (eds) Handbook of Proteolytic Enzymes (Third Edition). Academic Press, pp. 3240−3242. https://doi.org/10.1016/B978-0-12-38221 9-2.00714-6

Sambrook J, Russell D. W., Russell D. W., 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

Setiamarga D. H., Nakaji N., Iwamoto S., Teruya S., Sasaki T., 2019. DNA barcoding study of shelled gastropods in the intertidal rocky coasts of central Wakayama Prefecture, Japan, using two gene markers. GEOMATE Journal. J., 17(62): 9−16. https://doi.org/10.21660/ 2019.62.4521

Subhan B., Ferse S., Dzulfannazhir F., Izza L. M., Anggraini N. P., Santoso P., Madduppa H., 2022. DNA barcoding of the soft coral, Clavularia inflata, shows two major groups across Indonesian coral reefs. Ilmu Kelautan Indonesian Journal of Marine Sciences, 27(1): 1−12. http://dx.doi.org/10.14710/ ik.ijms.27.1.1-12

Tamura K., Stecher G., Kumar S., 2021. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7): 3022−3027. https://doi.org/10.1093/molbev/msab120

Thai Minh Quang, 2017. Overview of marine sponges research in Vietnam. Vietnam Journal of Marine Science and Technology, 17(4A): 98−107 (In Vietnamese with English summary). http://dx.doi.org/ 10.15625/1859-3097/17/4A/13265

Thakur N., Müller W., 2004. Biotechnological potential of marine sponges. Current Science, 86(11): 1506–1512.

Thung D. C., 2024. Species composition and distribution of Sponges in some islands in the Vietnam sea. Vietnam Journal of Marine Science and Technology, 24(4): 375−385. doi: 10.15625/1859-3097/21471

Varijakzhan D., Loh J. Y, Yap W. S., Yusoff K., Seboussi R., Lim S.E., Lai K. S., Chong C.M., 2021. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar. Drugs, 19 (5): 246. https://doi.org/10.3390/md19050246

Worheide G., Erpenbeck D., Menke C., 2007. The Sponge barcoding project: aiding in the identification and description of poriferan taxa. Porifera research: Biodiversity, innovation, and sustainability, 28: 123−128.

Yamana Y., Thandar A. S., Hayashibara T., Setiamarga D. H. E., 2022. A new species of dendrochirotid holothuroid from deep water of southern Japan, with the erection of a new genus, Satsumaocnus (Echinodermata: Holothuroidea: Dendrochirotida: Cucumariidae: Colochirinae). Zootaxa, 5209(2): 270−284. https://doi.org/10.11646/ zootaxa.5209.2.7

Downloads

Published

25-12-2025

How to Cite

Nguyen, Q. H., Nguyen, C. M., Pham, T. H., Hoang, D. C., Luu, H. X., Nguyen, V. T., … Tran, M. L. (2025). DNA isolation for PCR amplification and molecular identification of marine sponges collected in Con Dao Islands, Vietnam. Academia Journal of Biology, 47(4), 113–128. https://doi.org/10.15625/2615-9023/22947

Issue

Section

Articles

Similar Articles

<< < 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 > >> 

You may also start an advanced similarity search for this article.