Isolation and identification of endophytic bacteria from Mangifera indica (MANGO) as a potential biocontrol agent against the emerging bacteria causing bacterial blight
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/22836Keywords:
Bacterial endophytes, bacterial blight, biocontrol, Enterobacter asburiae, mangoAbstract
Mango (Mangifera indica), the national fruit of the Philippines and an economically important crop, faces various challenges, including diseases such as bacterial blight, which has impacted its production in recent years. This study isolated and identified bacterial endophytes from mango plants and evaluated their antagonistic activity against the emerging bacteria causing bacterial blight pathogen Enterobacter asburiae. A total of thirty-three bacterial isolates were obtained and characterized morphologically and biochemically. Antagonistic assays demonstrated that four isolates inhibited the growth of E. asburiae. 16S rRNA sequencing identified these isolates as members of the genera Bacillus, Alcaligenes, Proteus, Paenibacillus. Among them, isolate CTL S2-R1 (Alcaligenes sp.) exhibited the most significant inhibitory effect, with a mean zone of inhibition of 16.67 ± 1.53 mm. Further investigations are recommended to characterize and identify the antibacterial compounds produced by these endophytes.
Downloads
References
Adhikary R., Mandal S., Mandal V., 2022. Seasonal Variation Imparts the Shift in Endophytic Bacterial Community Between Mango and its Hemiparasites. Current Microbiology, 79(9): 287. https://doi.org/ 10.1007/s00284-022-02987-2
Afzal I., Shinwari Z. K., Sikandar S. Shahzad S., 2019. Plant Beneficial Endophytic Bacteria: Mechanisms, Diversity, Host Range and Genetic Determinants. Microbiological Research, 221: 36−49. https://doi.org/ 10.1016/j.micres.2019.02.001
Ahmad M. F., Ahmad F. A., Alsayegh A. A., Zeyaullah M., AlShahrani A. M., Muzammil K., Saati A. A., Wahab S., Elbendary E. Y., Kambal N., Abdelrahman M. H. Hussain S., 2024. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon, 10(7): e29128. https://doi.org/ 10.1016/j.heliyon.2024.e29128
Aleklett K., Leff J. W., Fierer N. Hart M., 2014. Distinct root-associated bacterial communities on three wild plant species growing in a common field. PeerJ PrePrints, 2: e548v1. https://doi.org/ 10.7287/PEERJ.PREPRINTS.548V1
Ali M. A., Ahmed T., Ibrahim E., Rizwan M., Chong K. P., Yong J. W. H., 2024. A review on mechanisms and prospects of endophytic bacteria in biocontrol of plant pathogenic fungi and their plant growth-promoting activities. Heliyon, 10(11): e31573. https://doi.org/10.1016/j.heliyon. 2024.e31573
Anjum Nawed, Chandra Ramesh, 2015. Endophytic bacteria: Optimization of isolation procedure from various medicinal plants and their preliminary characterization. Asian Journal of Pharmaceutical and Clinical Research, 8(4): 233−238.
Aryal Sagar, 2022. Microbiology Info. Potassium hydroxide Test – Principle, Procedure, Uses and Interpretation. https://microbiologyinfo.com/potassium-hydroxide-test/. [Accessed: 19/09/2024]
Balouiri M., Sadiki M., Ibnsouda S. K., 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2): 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Basumatary B., Das D., Choudhury B. N., Dutta P., Bhattacharyya A., 2021. Isolation and characterization of endophytic bacteria from tomato foliage and their in vitro efficacy against root-knot nematodes. Journal of Nematology, 53(1): 1–16. https://doi.org/10.21307/ jofnem-2021-104
Bhattacharjee Ritika, Dey Utpal, 2014. An overview of fungal and bacterial biopesticides to control plant pathogens/diseases. African Journal of Microbiology Research, 8(17): 1749−1762. https://academicjournals.org/ journal/AJMR/article-full-text-pdf/E7A439A44113
Bódalo A., Borrego R., Garrido C., Bolivar-Anillo H. J., Cantoral J. M., Vela-Delgado M. D., González-Rodríguez V. E., Carbú M., 2023. In Vitro Studies of Endophytic Bacteria Isolated from Ginger (Zingiber officinale) as Potential Plant-Growth-Promoting and Biocontrol Agents against Botrytis cinerea and Colletotrichum acutatum. Plants, 12(23): 4032. https://doi.org/10.3390/plants12234032
Bolívar-Anillo H. J., González‐Rodríguez V. E., Cantoral J. M., García-Sánchez D., Collado I. G., Garrido C., 2021. Endophytic Bacteria Bacillus subtilis, Isolated from Zea mays, as Potential Biocontrol Agent against Botrytis cinerea. Biology, 10(6): 492. https://doi.org/ 10.3390/biology10060492
Cappuccino J.G., Welsh C.T., 2017. Microbiology: A Laboratory Manual (11th ed.). Pearson, New York, USA, pp. 165: 213−214.
Chen X., Laborda P., Li C., Zhao Y., Liu F., 2023. First Report of Bacterial Leaf Blight Caused by Enterobacter asburiae on Sorghum in Jiangsu Province, China. Plant Disease, 107(12): 4017. https://doi.org/10.1094/pdis-07-23-1325-pdn
Coutinho Teresa, Bophela Khumbuzile, 2021. Tree leaves as a habitat for phyllobacteria. Forest Microbiology, pp. 133−144. https://doi.org/10.1016/B978-0-12-822542-4.00001-2
Dasari T. R., Inamdar S. M., Pawar K. V., 2015. Study on production of bioactive compounds and plant promoting ability of endophytes isolated from Rosa sp. and Mangifera indica. International Journal of Current Microbiology and Applied Sciences, 2: 136–143. https://www.ijc-mas.com/special/2/Tanmayee%20R.%20Dasari,%20et%20al.pdf
Dashyal M. S., Sangeetha C. G., Appanna V., Halesh G. K., Devappa V., 2019. Isolation and Morphological Characterization of Endophytic Fungi Isolated from Ten Different Varieties of Mango. International Journal of Current Microbiology and Applied Sciences, 8(3): 717−726. https://doi.org/10.20546/ijcmas. 2019.803.088
De La Fuente L., Merfa M. V., Cobine P. A., Coleman J. J., 2022. Pathogen Adaptation to the Xylem Environment. Annual Review of Phytopathology, 60(1): 163–186. https://doi.org/10.1146/annurev-phyto-021021-041716
Department of Agriculture, 2018. Philippine Mango Industry Roadmap 2017-2022. Department of Agriculture. https://www.da.gov.ph/wp-content/uploads/2019/06/Philippine-Mango-Industry-Roadmap-2017-2022.pdf
Dobrzyński J., Naziębło, A., 2024. Paenibacillus as a Biocontrol Agent for Fungal Phytopathogens: Is P. polymyxa the Only One Worth Attention? Microbial Ecology, 87(1): 134. https://doi.org/ 10.1007/s00248-024-02450-8
Dong L., Cheng R., Xiao L., Wei F., Wei G., Xu J., Wang Y., Guo X., Chen Z., Chen S., 2018. Diversity and composition of bacterial endophytes among plant parts of Panax notoginseng. Chinese Medicine, 13(1): 41. https://doi.org/10.1186/s13020-018-0198-5
Drzewiecka Dominika, 2016. Significance and Roles of Proteus spp. Bacteria in Natural Environments. Microbial Ecology, 72(4): 741–758. https://doi.org/10.1007/ s00248-015-0720-6
Emitaro W. O., Kawaka F., Musyimi D. M., Adienge A., 2024. Diversity of endophytic bacteria isolated from leguminous agroforestry trees in western Kenya. AMB Express, 14(1): 18. https://doi.org/ 10.1186/s13568-024-01676-6
Frank A. C., Guzmán J. P. S., Shay J. E., 2017. Transmission of bacterial endophytes. Microorganisms, 5(4): 70. https://doi.org/10.3390/microorganisms5040070
Ibrahim E., Nasser R. A., Hafeez R., Ogunyemi S. O., Abdallah Y., Khattak A. A., Shou L., Zhang Y., Ahmed T., Hatamleh A. A., Al-Dosary M. A., Ali H. M., Luo J., Li B., 2023. Biocontrol Efficacy of Endophyte Pseudomonas poae to Alleviate Fusarium Seedling Blight by Refining the Morpho-Physiological Attributes of Wheat. Plants, 12(12): 2277. https://doi.org/10.3390/plants12122277
Jean-Martial K. K. F., Sévérin N. N., Gaston K. K., Seydou T., Dramane D. D., Brahima C., Didier K. K., Daouda K., 2021. Current Situation of Mango Bacterial Black Spot Caused by Xanthomonas campestris pv mangiferaeindicae in the Poro and Tchologo Regions in Côte d’Ivoire. American Journal of Food and Nutrition, 9(3): 117−121. https://doi.org/10.12691/ ajfn-9-3-4
Kakar K., Nawaz Z., Cui Z., Almoneafy A., Ullah R., Shu Q., 2017. Rhizosphere-associated Alcaligenes and Bacillus strains that induce resistance against blast and sheath blight diseases, enhance plant growth and improve mineral content in rice. Journal of Applied Microbiology, 124(3): 779–796. https://doi.org/10.1111/ jam.13678
Kashyap N., Singh S. K., Yadav N., Singh V. K., Kumari M., Kumar D., Shukla L., Kaushalendra N., Bhardwaj N., Kumar, A., 2023. Biocontrol screening of endophytes: applications and limitations. Plants, 12(13): 2480. https://doi.org/ 10.3390/plants12132480
Kim S. C., Koo B.-K., Han J. A., 2023. Exploiting Bacterial Genera as Biocontrol Agents: Mechanisms, Interactions and Applications in Sustainable Agriculture. Journal of Plant Biology, 66: 485−498. https://doi.org/10.1007/s12374-023-09404-6
Kiros T., Ebu S. M., Melaku Y., Tesfa T., Dekebo A., 2023. Isolation and identification of endophytic bacteria and associated compounds from Gloriosa superba and their antibacterial activities. Heliyon, 9(11): e22104. https://doi.org/ 10.1016/j.heliyon.2023.e22104
Khanam Bushra, Chandra Ramesh, 2017. Optimization of surface sterilization process of selected Dye-Yielding plants for isolation of bacterial endophytes. Applications of Biotechnology for Sustainable Development, pp. 45–50. https://doi.org/10.1007/978-981-10-5538-6_7
Kumar S., Stecher G., Suleski M., Sanderford M., Sharma S., Tamura K., 2024. Molecular Evolutionary Genetics Analysis Version 12 for adaptive and green computing. Molecular Biology and Evolution, 41: 1−9.
Liang Y., Fu J., Chao S., Tzean Y., Hsiao C., Yang Y., Chen Y., Lin Y., 2022. Postharvest Application of Bacillus amyloliquefaciens PMB04 Fermentation Broth Reduces Anthracnose Occurrence in Mango Fruit. Agriculture, 12(10): 1646. https://doi.org/10.3390/agriculture12101646
Lin H., Liu C., Peng Z., Tan B., Wang K., Liu Z., 2022. Distribution pattern of endophytic bacteria and fungi in tea plants. Frontiers in Microbiology, 13: 872034. https://doi.org/10.3389/fmicb. 2022.872034
Madeiras Angie, 2020. Bacterial diseases of vegetable crops: Leaf spots & blights. https://www.umass.edu/agriculture-food-environment/vegetable/fact-sheets/bacterial-diseases-of-vegetable-crops-leaf-spots-blights. [Accessed: 09/03/2024]
Mahlangu Siphiwe G., Tai Siew L., 2022. Morphological and molecular characterization of bacterial endophytes from Centella asiatica leaves. Journal of Genetic Engineering and Biotechnology, 20(1): 171. https://doi.org/10.1186/ s43141-022-00456-8
Marchetti V. M., Kuka A., Piazza A., Gaiarsa S., Merla C., Sottosanti M., Cambieri P., Migliavacca R., Baldanti F., 2024. Enterobacter asburiae ST229: an emerging carbapenemases producer. Scientific Reports, 14(1): 6220. https://doi.org/10.1038/s41598-024-55884-y
Mardaneh Jalal, Soltan-Dallal Mohammad, 2016. Isolation and Identification Enterobacter asburiae from Consumed Powdered Infant Formula Milk (PIF) in the Neonatal Intensive Care Unit (NICU). Acta Medica Iranica, 54(1): 39−43.
Miliute I., Buzaite O., Baniulis D., Stanys V., 2015. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste-Agriculture, 102(4): 465–478. https://doi.org/10.13080/z-a.2015.102.060
Muhtari K., Sailaja I., Shekhawat B. K., Kaura S., Mehta S., 2024. Identification of Bacterial Endophytes Isolated from Different Medicinal Plants. International Journal of Biomedical and Clinical Analysis, pp. 24–40. https://doi.org/ 10.61797/ijbca.v4i1.331
Omomowo Olawale Israel, Babalola Olubukola Oluranti., 2019. Bacterial and Fungal Endophytes: Tiny Giants with Immense Beneficial Potential for Plant Growth and Sustainable Agricultural Productivity. Microorganisms, 7(11): 481. https://doi.org/10.3390/microorganisms7110481
Pandit M. A., Kumar J., Gulati S., Bhandari N., Mehta P., Katyal R., Rawat C. D., Mishra V., Kaur J., 2022. Major Biological Control Strategies for Plant Pathogens. Pathogens, 11(2): 273. https://doi.org/10.3390/ pathogens11020273
Philippot L., Raaijmakers J. M., Lemanceau P., Van der Putten W. H., 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11: 789–799. https://doi.org/10.1038/ nrmicro3109
Saitou N., Nei M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406−425.
Sangwan P., Raj K., Wati L., Kumar A., 2021. Isolation and evaluation of bacterial endophytes against Sclerospora graminicola (Sacc.) Schroet, the causal of pearl millet downy mildew. Egyptian Journal of Biological Pest Control, 31(1): 123. https://doi.org/10.1186/s41938-021-00468-5
Santoyo G., Moreno-Hagelsieb G., Orozco-Mosqueda M., Glick and Bernard R., 2016. Plant Growth-Promoting Bacterial Endophytes. Microbiological Research, 183: 92−93. https://doi.org/10.1016/ j.micres.2015.11.008
Selim H., Gomaa N., Essa A., 2016. Antagonistic Effect of the Endophytic Bacteria and Against some Phytopathogens. Egyptian Journal of Botany, 56(3): 613–626. https://doi.org/ 10.21608/ejbo.2016.2721
Sharma Mahima, Mallubhotla Sharada, 2022. Diversity, Antimicrobial Activity, and Antibiotic Susceptibility Pattern of Endophytic Bacteria Sourced from Cordia dichotoma L. Frontiers in Microbiology, 13: 879386. https://doi.org/10.3389/ fmicb.2022.879386.
Shivalingaiah S., Bindushree H.S., Basavaraju G.L., Pushpalatha H.G., 2024. Isolation and Identification of Soil-Derived Amylase-Producing Bacteria. Current Agriculture Research Journal, 12(1): 445−458. https://doi.org/10.12944/carj.12.1.36
Sossah F. L., Aidoo O. F., Dofuor A. K., Osabutey A. F., Obeng J., Abormeti F. K., Duker R. Q., Antwi‐Agyakwa A. K., Osei‐Owusu J., Loh S. K., Honger J. O., Borgemeister C., 2024. A critical review on bacterial black spot of mango caused by Xanthomonas citri pv. mangiferaeindicae: Current status and direction for future research. Forest Pathology, 54(3): e12860. https://doi.org/10.1111/efp.12860
Staden R., 1996. The Staden Sequence Analysis Package. Molecular Biotechnology, 5: 233−241. https://doi.org/10.1007/BF02900361
Tamura K., Dudley J., Nei M., Kumar S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24: 1596−1599.
Tamura K., Nei M., Kumar S., 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA), 101: 11030−11035.
Thiese M. S., Ronna B., Ott U., 2016. P value interpretations and considerations. Journal of Thoracic Disease, 8(9): E928–E931. https://doi.org/10.21037/jtd.2016.08.16
Tsipinana S., Obi L., Amoo S., Adeleke R., 2024. Plant growth-promoting potential of bacterial endophytes isolated from Lessertia frutescens. South African Journal of Botany, 174: 768–778. https://doi.org/10.1016/j.sajb.2024.09.043
Tugume J. K., Tusiime G., Sekamate A. M., Buruchara R., Mukankusi C. M., 2018. Diversity and interaction of common bacterial blight disease-causing bacteria (Xanthomonas spp.) with Phaseolus vulgaris L. The Crop Journal, 7(1): 1–7. https://doi.org/10.1016/j.cj.2018.10.002
Vidaurre-Barahona D., Wang-Wong A., Uribe-Lorío L., 2020. Erwinia billingiae causes bacterial Canker of Mango (Mangifera indica) in Costa Rica. Agronomía Mesoamericana: 306–315. https://doi.org/10.15517/am.v32i1.40965
Wang R., Wang X., Liu Y., Chen P., Wang Y., Wang W., Zhang Y., Gu R., Zhang Y., 2023. First Report of Radish Tubers Rot Caused by Enterobacter asburiae in China. Plant Disease, 107(9): 2839. https://doi.org/10.1094/pdis-11-22-2650-pdn
Wu W., Chen W., Liu S., Wu J., Zhu Y., Qin L., Zhu B., 2021. Beneficial relationships between endophytic bacteria and medicinal plants. Frontiers in Plant Science, 12: 646146. https://doi.org/ 10.3389/fpls.2021.646146
Zhang X., Zhao N., Yang J., Zhang W., Yang Y., Li L., Yan H., Liu D., 2020. Ginger Tuber Rot Caused by Enterobacter asburiae in China. Plant Disease, 104(11): 3054. https://doi.org/10.1094/ pdis-03-20-0645-pdn
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hannah Avril Bombales, Jessica Mae Pomar, Sophia Valencia, Liezel Atole-Nieva

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Academia Journal of Biology (AJB) is an open-access and peer-reviewed journal. The articles published in the AJB are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits for immediate free access to the articles to read, download, copy, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited (with a link to the formal publication through the relevant DOI), and without subscription charges or registration barriers. The full details of the CC BY-NC-ND 4.0 License are available at https://creativecommons.org/licenses/by-nc-nd/4.0/.
