Micropropagation and analysis of somaclonal variation in “My Da” strawberry ( Fragaria ananassa Duch.) using rapd marker

Ngoc Ai Trinh, Nghi Khac Nhu
Author affiliations

Authors

  • Ngoc Ai Trinh Tra Vinh University
  • Nghi Khac Nhu Trường Đại học Trà Vinh

DOI:

https://doi.org/10.15625/2615-9023/22798

Keywords:

Coconut coir, meristem culture, multiplication, plant regulators, root formation, strawberry

Abstract

In vitro propagation of strawberry presents many challenges that must be addressed to enhance survival rates during ex vitro acclimation and to ensure the production of high-quality seedlings. This study aimed to develop an optimized protocol for the disinfection, multiplication, rooting, and acclimatization of “My Da” cultivar. Results showed that treating runner segments of “My Da” cultivar with 1% NaClO was effective. For multiplication, Murashige and Skoog (MS) medium supplemented with 0.5 mg. L-1 BAP with 0.3 mg. L-1 kinetin for “My Da” yielded the highest shoot proliferation, leaf count, and plant height. Rooting was most effective on half-strength MS medium supplemented with 0.3 mg. L-1 BAP provided optimal rooting results. In the acclimatization stage, seedlings grown in organic compost was an improved survival rate. RAPD analysis revealed cultivar-dependent somaclonal variation, with the highest polymorphism in the OPK03 marker. The genotype-specific protocol supports efficient large-scale propagation and highlights the need for genetic monitoring in commercial systems.

Downloads

Download data is not yet available.

References

The findings achieved in the present study are an optimal protocol for micropropagation and ex vitro acclimatization of the “My Da” cultivar. Our results revealed that treatment with 1% NaClO for 20 min showed high efficiency in decreasing contamination and elevating meristem viability after the disinfection in “My Da” cultivar. The MS medium supplemented with 0.5 mg.L-1 BAP + 0.3 mg.L-1 Kinetin were the optimal media for the shoot proliferation and growth (the highest number of shoots and leaves, and greater plant height). The 1/2 MS medium supplemented with 0.1 mg.L-1 NAA + 0.1 mg.L-1 BAP was suitable for root formation. During ex vitro acclimatization, organic compost substrate was optimal for “My Da” strawberry. Moreover, using a molecular marker helps evaluate the genetic variation of meristem-derived and conventionally propagated strawberry plants was conducted in these strawberry cultivars.

Acknowledgements: We acknowledge the support of time and facilities from Tra Vinh University (TVU) for this study.

REFERENCES

Abdalla N., El-Ramady H., Seliem M. K., El-Mahrouk M. E., Taha N., Bayoumi Y., Shalaby T. A., Dobránszki J., 2022. An academic and technical overview on plant micropropagation challenges. Horticulturae, 8: 677. https://doi.org/10.3390/horticulturae 8080677

Ai T. N., Lieu T. T. T., Kiet H. T., Quang T. N., Thuc L. V., Hiep N. M., Dung N. T., 2023. Micropropagation of strawberry (Fragaria ananassa “pajaro”) by meristem culture method. Vietnam Journal of Science and Technology-MOSY, 65(5): 4−69 https://b.vjst.vn/index.php/ban_b/ article/view/2325

Ali A., Sajid A., Naveed H., Majid A. B. A., Saleem A., Khan U. A., Jafery F. I., Naz S., 2011. Initiation, proliferation and development of micro- propagation system for mass scale production of banana through meristem culture. African Journal of Biotechnology, 10(70): 15731−15738. https://doi.10.5897/AJB11.2079

Aloni R., Aloni E., Langhans M., Ullrich C. I., 2006. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance, and root gravitropism. Annals of Botany, 97: 883−893. https://doi:10.1093/aob/mcl027

Al-Zahim M. A., Ford-Lloyd B. V., Newbury H. J., 1999. Detection of somaclonal variation in garlic (Allium sativum L.) using RAPD and cytological analysis. Plant Cell Reports, 18: 473−477. https://doi.org/10.1007/s002990050606

Basu A., Nguyen A., Betts N. M., Lyons T. J., 2014. Strawberry as a functional food: an evidence-based review. Critical Reviews in Food Science and Nutrition, 54: 790−806. https://doi:10.1080/10408398.2011.608174

Battistini C., Rosati P., 1991. In vitro evaluation of somaclonal strawberry (Fragaria ananassa ‘Brighton’) variants for susceptibility to Phytophthora cactorum. CABI: 121−123.

Biswas M. K., Dutt M., Roy U. K., Islam R., Hossain M., 2009. Development and evaluation of in vitro somaclonal variation in strawberry for improved horticultural traits. Scientia Horticulturae, 122: 409−416. https://doi.org/10.1016/j.scienta.2009.06.002

Borkowska B., 2001. Morphological and physiological characteristics of micropropagated strawberry plants rooted in vitro or ex vitro. Scientia Horticulturae, 89(3): 195−206.

Chevreau E., Brisset M. N., Paulin J. P., James D. J., 1998. Fire blight resistance and genetic trueness-to-type of four somaclonal variants from the apple cultivar Greensleeves. Euphytica, 104(3): 199−205. https://doi.org/10.1023/A:1018673813980

Dar S. A., Nawchoo I. A., Tyub S., Kamili A. N., 2021. Effect of plant growth regulators on in vitro induction and maintenance of callus from leaf and root explants of Atropa acuminata Royal ex Lindl. Biotechnology Reports, 32: 688. https://doi.org/10.1016/ j.btre.2021.e00688

Debnath S. C., 2005. Strawberry sepal: Another explant for thidiazuron-induced adventitious shoot regeneration. In Vitro Cellular And Developmental Biology. Plant, 41: 671−676. https://doi.org/ 10.1079/IVP2005688

Devarumath R. M., Doule R. B., Kawar P. G., Naikebawane S. B., Nerkar Y. S., 2007. Field performance and RAPD analysis to evaluate genetic fidelity of tissue culture raised plants vis-à-vis conventional setts derived plants of sugarcane. An International Juornal of Sugar Crops and Related Industries, 9: 17−22. https://doi.org/10.1007/BF02956908

Evans D. A., Sharp W. R., Medina‐Filho H. P., 1984. Somaclonal and gametoclonal variation. American Journal of Botany, 71(6): 759−774. https://doi.org/10.1002/ j.1537-2197.1984.tb14141.x

Gaafar R. M., Saker M. M., 2006. Monitoring of cultivars identity and genetic stability in strawberry varieties grown in Egypt. World Journal of Agricultural Sciences, 2(1): 29−36.

Giampieri F., Alvarez-Suarez J. M., Gasparrini M., Forbes- Hernandez T. Y., Afrin S., Bompadre S., Rubini, C., Zizzi A., Astolfi P., 2016. Strawberry consumption alleviates doxorubicin-induced toxicity by suppressing oxidative stress. Food and Chemical Toxicology, 94: 128−137. https://doi.org/ 10.1016/j.fct.2016.06.003

Giampieri F., Alvarez-Suarez J. M., Mazzoni L., Forbes-Hernandez T. Y., Gasparrini M., Gonzàlez-Paramàs A. M., Santos-Buelga C., Quiles J. L., Bompadre S., 2014. Polyphenol-rich strawberry extract protects human dermal fibroblasts against hydrogen peroxide oxidative damage and improves mitochondrial functionality. Molecules, 19: 7798−7816. doi: 10.3390/ molecules19067798

Govinden-Soulange J., Somanah D., Ranghoo-Sanmukhiya M., Boodia N., Rajkomar B., 2010. Detection of somaclonal variation in micropropagated Hibiscus sabdariffa L. using RAPD markers. University of Mauritius Research Journal, 16(1): 435−447.

Hammerschlag F. A., Ognjanov V., 1990. Somaclonal variation in peach: screening for resistance to Xanthomonas campestris pv. pruni and Pseudomonas synringae. Acta Horticulturae, 280: 408. doi:

10.17660/ActaHortic.1990.280.65

Hannum S. M., 2004. Potential impact of strawberries on human health: a review of the science.Critical Reviews in Food Science and Nutrition, 44: 1−17. doi: 10.1080/10408690490263756

Jin M., Liu L., Wang D., Yang D., Liu W., Yin J., Yang Z., Wang H., Qiu Z., 2020. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. The ISME Journal, 14: 1847−1856. https://doi.10.1038/s41396-020-0656-9

Kaeppler S. M., Phillips R. L., 1993. Tissue culture-induced DNA methylation variation in maize. Proceedings of the National Academy of Sciences, 90(19): 8773−8776. https://doi.org/10.1073/pnas. 90.19.8773

Khatri P., Rana J. S., Sindhu A., Jamdagni P., 2019. Effect of additives on enhanced in-vitro shoot multiplication and their functional group identification of Chlorophytum borivilianum Sant. SN Applied Sciences, 1: 1105. doi: 10.1007/ s42452-019-1118-8

Klanrit P., Kitwetcharoen H., Thanonkeo P., Thanonkeo S., 2023. In vitro propagation of Philodendron erubescens ‘Pink Princess’ and ex vitro acclimatization of the plantlets. Horticulturae, 9(6): 688. https://doi.org/10.3390/horticulturae9060688

Kurepa J., Smalle J. A., 2022. Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. International journal of molecular sciences, 23(4): 1933. https://doi.10.3390/ijms23041933

Li S. M., Zheng H. X., Zhang X. S., Sui N., 2021. Cytokinins as central regulators during plant growth and stress response.Plant Cell Reports, 40: 271−282. https://doi.org/10.1007/s00299-020-02612-1

McPheeters K., Skirvin R. M., 1989. Somaclonal variation among ex vitro ‘Thornless Evergreen’ trailing blackberries. Euphytica, 42(1): 155−162. https://doi.org/10.1007/BF00042627

Meyers K. J., Watkins C. B., Pritts M. P., Liu R. H., 2003. Antioxidant and antiproliferative activities of strawberries. Journal of Agricultural and Food Chemistry, 51: 6887−6892. https://doi.org/10.1021/jf034506n

Morales R .G. F., Resende J. T. V., Faria M. V., Andrade M. C., Resende L.V., Delatorre C. A., Silva P. R. D., 2011. Genetic similarity among strawberry cultivars assessed by RAPD and ISSR markers. Scientia Agricola, 68: 665−670. https://doi.org/ 10.1590/S0103-90162011000600010

Muhammad A., Rashid H., Hussain I., Naqvi S., 2007. Proliferation-rate Effects of BAP and Kinetin on Banana (Musa spp. AAA Group) ‘Basrai’. Hort Science, 42: 1253−1255. https://doi.org/10.21273/HO RTSCI.42.5.1253

Müller D., Leyser O., 2011. Auxin, cytokinin and the control of shoot branching. Annals of botany, 107(7): 1203−1212. doi: 10.1093/ aob/mcr069

Munir M., Iqbal S., Baloch J., Khakwani A., 2015. In vitro explant sterilization and bud initiation studies of four strawberry cultivars. Journal of Applied Horticulture, 17: 192−198. https://doi.10.37855/jah. 2015.v17i03.36

Murashige T., & Skoog F., 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3): 473. doi: 10.1111/ j.1399-3054.1962.tb08052.x

Naing A. H., Kim S. H., Chung M. Y., Park S. K., Kim C. K., 2019. In vitro propagation method for production of morphologically and genetically stable plants of different strawberry cultivars. Plant methods, 15: 1−10. https://doi.org/10.1186/s13007-019-0421-0

Nishi S., Ohsawa K. 1973. Mass production method of virus-free strawberry plants through meristem callus. Japan Agricultural Research Quarterly, 7: 189−194.

Palombi M., Damiano C., 2002. Comparison between RAPD and SSR molecular markers in detecting genetic variation in kiwifruit (Actinidia deliciosa A. Chev). Plant Cell Reports, 20: 1061−1066. https://doi.org/10.1007/s00299-001-0430-z

Pasternak T.P., Steinmacher D., 2024. Plant growth regulation in cell and tissue culture in vitro. Plants, 13: 327. doi: 10.3390/ plants13020327

Perveen S., Varshney A., Anis M., Aref I. M., 2011. Influence of cytokinins, basal media and pH on adventitious shoot regeneration from excised root cultures of Albizia lebbeck. Journal of Forestry Research, 22: 47−52. https://doi.10.1007/s11676-011-0124-5

Peschke V. M., Phillips R. L., 1992. Genetic implications of somaclonal variation in plants. Advances in genetics, 30: 41−75. https://doi.org/10.1016/S0065-2660(08)60 318-1

Ptak A., Szewczyk A., Simlat M.,Błażejczak A., Warchoł M., 2023. Meta-Topolin-induced mass shoot multiplication and biosynthesis of valuable secondary metabolites in Stevia rebaudiana Bertoni bioreactor culture. Scientific Reports, 13: 15520. https://doi.10.1038/s41598-023-42619-8

Rani V., Raina S. N., 2000. Genetic fidelity of organized meristem-derived micropropagated plants: a critical reappraisal. In vitro Cellular & Developmental Biology-Plant, 36: 319−330. https://doi.org/10.1007/s11627-000-0059-6

Sahijram L., Soneji J. R., Bollamma K. T., 2003. Analyzing somaclonal variation in micropropagated bananas (Musa spp.). In vitro Cellular & Developmental Biology-Plant. 39: 551−556. https://doi.org/ 10.1079/IVP2003467

Sessou A. F., Kahia J. W., Houngue J. A., Ateka E. M., Dadjo C., Ahanhanzo C., 2020. In vitro propagation of three mosaic disease resistant cassava cultivars. BMC Biotechnology, 20: 51. https://doi.10.1186/s12896-020-00645-8

Soniya E. V., Banerjee N. S., Das M. R., 2001. Genetic analysis of somaclonal variation among callus-derived plants of tomato. Current Science, 80(5): 1213−1215.

Sosnowski J., Truba M., Vasileva V., 2023. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture, 13: 724. https://doi.org/ 10.3390/agriculture13030724

Tzanetakis I. E., Martin R. R., 2013. Expanding field of strawberry viruses which are important in North America. International Journal of Fruit Science, 13(1–2): 184−195.

Venkatachalam L., Sreedhar R. V., Bhagyalakshmi N., 2007. Micropropagation in banana using high levels of cytokinins does not involve any genetic changes as revealed by RAPD and ISSR markers. Plant Growth Regulation, 51: 193−205. https://doi.org/10.1007/ s10725-006-9154-y

Yildiz M., Er C., 2002. The effect of sodium hypochlorite solutions on in vitro seedling growth and shoot regeneration of flax (Linum usitatissimum). Naturwissenschaften, 89: 259−261. https://doi.10.1007/s00114-002-0310-6

Yıldız M., Ozcan S., Kahramanoğulları C. T., Tuna E., 2012. The effect of sodium hypochlorite solutions on the viability and in vitro regeneration capacity of the tissue. The Natural Products Journal, 2: 328−331. https://doi.org/10.4141/cjps2013 -250

Zhang S., Wang Y., Lu J.,Yu Z., Song H., Bond P. L., Guo J., 2021. Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. The ISME Journal, 15: 2969−2985. https://doi:10.1038/s41396-021-00980-4

Downloads

Published

21-12-2025

How to Cite

Trinh, N. A., & Nghi, K. N. (2025). Micropropagation and analysis of somaclonal variation in “My Da” strawberry ( Fragaria ananassa Duch.) using rapd marker. Academia Journal of Biology, 47(4), 87–102. https://doi.org/10.15625/2615-9023/22798

Issue

Section

Articles

Similar Articles

<< < 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 > >> 

You may also start an advanced similarity search for this article.