Xanthomonas sp. L019 inhibition by bacteriophage isolated from wild rice ( Oryza rufipogon )

Nguyen Hoang Luan, Nguyen Pham Anh Thi, Tran Thi Giang, Tran Thi Bich Van
Author affiliations

Authors

  • Nguyen Hoang Luan Institute of Food and Biotechnology, Can Tho University
  • Nguyen Pham Anh Thi Institute of Food and Biotechnology, Can Tho University
  • Tran Thi Giang Institute of Food and Biotechnology, Can Tho University
  • Tran Thi Bich Van Institute of Food and Biotechnology

DOI:

https://doi.org/10.15625/2615-9023/22662

Keywords:

Biofilm, controlling pathogenic, sustainable agriculture, Vietnam

Abstract

Bacteriophages are widely distributed in ecosystems, facilitating isolation. The study reported 16 phage strains capable of infecting Xanthomonas sp. L019. The host spectrum survey showed that phage strain B22 infected all 8 host bacterial strains; phage strains 13 and SR1 infected 6 bacterial strains, including Xanthomonas sp. (L19, 12280), Erwinia carotovora (TCDT3), and Ralstonia spp. (OT6, OT4, OT1); phage strains 21, PCR1, and TCDT7 infected 5 bacterial strains, including Xanthomonas sp. (L19, L20, 12280), E. carotovora (TCDT3), and Ralstonia sp. (OT6); and phage strains 2B2 and SR10 infected 4 bacterial strains, including Xanthomonas sp. (L19, 12280), E. carotovora (TCDT3), and Ralstonia sp. (OT6). The study of the lysis pattern of phage strains 13, 21, 3B and B22 showed the formation of clear lysis patterns, typical of lytic phage strains. The turbidimetry assay showed significant phage strain lysis, as indicated by reduced OD values. Investigation of the effect of phage on bacterial density showed that phages reduced it by approximately 1 log CFU/mL. The biofilm degradation test demonstrated significant control by all 4 phage strains against Xanthomonas sp. L019. Phage 13 exhibited the most optimal lytic ability across all 5 time points, reducing bacterial density to 5.88 log CFU/mL and biofilm OD to 0.24, compared to the control value of 0.6. These results highlight the potential of phages as alternative therapeutics, affirming their effectiveness in controlling pathogenic bacteria and contributing to green, sustainable agriculture.

Downloads

Download data is not yet available.

References

Abhilash M., Vidya A. G. & Jagadevi T., 2008. Bacteriophage Therapy: A War Against Antibiotic Resistant Bacteria. The Internet Journal of Alternative Medicine, 7(1). https://ispub.com/ijam/7/1/13668

Alves D. R., Gaudion A., Bean J. E., Perez Esteban P., Arnot T. C., Harper D. R., Kot W., Hansen L. H., Enright M. C. & Jenkins A. T. A., 2014. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Applied and Environmental Microbiology, 80(21): 6694–6703. https://doi.org/10.1128/AEM. 01789-14

Büttner D. & Bonas U., 2010. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiology Reviews, 34(2): 107–133. https://doi.org/10.1111/ j.1574-6976.2009.00192.x

Dechamma M. M., Santhosh K. S., Maiti B., Karunasagar I. & Karunasagar I., 2022. Application of novel lytic bacteriophages to control Vibrio parahaemolyticus load in seafood. Journal of Consumer Protection and Food Safety, 17(1): 41–49. https://doi.org/10.1007/s00003-021-01356-8

Dicks L. M. T. & Vermeulen W., 2024. Bacteriophage-Host Interactions and the Therapeutic Potential of Bacteriophages. Viruses, 16(3): 3. https://doi.org/10.3390/ v16030478

Enwuru N. V., Gill J. J., Anttonen K. P., Enwuru C. A., Young Ry., Coker A. O. & Cirillo J. D., 2021. Isolation and characterization of novel phage (Podoviridae ɸParuNE1) and its efficacy against multi-drug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. Beni-Suef University Journal of Basic and Applied Sciences, 10(1): 50. https://doi.org/ 10.1186/s43088-021-00137-4

Gao R., Sun K., Abdalla A. E., Tian Z., An H., Zhang Z., Liu Y., Zeng X., He X. & Fan X., 2024. Isolation, characterization, and preliminary application of three Vibrio phages in controlling Vibrio alginolyticus. LWT, 191: 115638. https://doi.org/10.1016/j.lwt.2023.115638

Goodarzi F., Hallajzadeh M., Sholeh M., Talebi M., Mahabadi V. P. & Amirmozafari N., 2021. Biological characteristics and anti-biofilm activity of a lytic phage against vancomycin-resistant Enterococcus faecium. Iranian Journal of Microbiology, 13(5): 691–702. https://doi.org/10.18502/ ijm.v13i5.7436

Goodridge L. D., 2010. Designing Phage Therapeutics. Bentham Science Publishers. https://doi.org/10.2174/1389 20110790725348

Huy P. Q., Thinh H. C., Nga N. T. T. & Trung P. N. M., 2016. Evaluation of the effectiveness of bacteriophages in controlling rice grain rot disease caused by Burkholderia glumae. Can Tho University Journal of Science, 45: 45. https://doi.org/10.22144/ctu.jvn.2016.527

Islam M. S., Zhou Y., Liang L., Nime I., Liu K., Yan T., Wang X. & Li J., 2019. Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses, 11(9): 9. https://doi.org/10.3390/v11090841

Jurczak-Kurek A., Gąsior T., Nejman-Faleńczyk B., Bloch S., Dydecka A., Topka G., Necel A., Jakubowska-Deredas M., Narajczyk M., Richert M., Mieszkowska A., Wróbel B., Węgrzyn G. & Węgrzyn A., 2016. Biodiversity of bacteriophages: Morphological and biological properties of a large group of phages isolated from urban sewage. Scientific Reports, 6(1): 34338. https://doi.org/10.1038/srep34338

Korzeniowski P., Śliwka P., Kuczkowski M., Mišić D., Milcarz A. & Kuźmińska-Bajor M., 2022. Bacteriophage Cocktail Can Effectively Control Salmonella Biofilm in Poultry Housing. Frontiers in Microbiology: 13. https://doi.org/10.3389/ fmicb.2022.901770

Kropinski A. M., Mazzocco A., Waddell T. E., Lingohr E. & Johnson R. P., 2009a. Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay. In M. R. J. Clokie & A. M. Kropinski (Eds.), Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions (pp. 69–76). Humana Press. https://doi.org/10.1007/978-1-60327-164-6_7

Kropinski A. M., Mazzocco A., Waddell T. E., Lingohr E., & Johnson, R. P. (2009b). Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay. In M. R. J. Clokie & A. M. Kropinski (Eds.), Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions (pp. 69–76). Humana Press. https://doi.org/10.1007/978-1-60327-164-6_7

Luzon-Hidalgo R., Risso V. A., Delgado A., Andrés-León E., Ibarra-Molero B. & Sanchez-Ruiz J. M., 2021. Evidence for a role of phenotypic mutations in virus adaptation. iScience, 24(4): 102257. https://doi.org/10.1016/j.isci.2021.102257

Marin V. R., Ferrarezi J. H., Vieira G. & Sass D. C., 2019. Recent advances in the biocontrol of Xanthomonas spp. World Journal of Microbiology and Biotechnology, 35(5): 72. https://doi.org/ 10.1007/s11274-019-2646-5

Nga N. T. T., Tran T. N., Holtappels D., Ngan N. L., Hao N. P., Vallino M., Tien D. T. K., Khanh-Pham N. H., Lavigne R., Kamei K., Wagemans J. & Jones J. B., 2021. Phage Biocontrol of Bacterial Leaf Blight Disease on Welsh Onion Caused by Xanthomonas axonopodis pv. Allii. Antibiotics, 10(5): 5. https://doi.org/ 10.3390/antibiotics10050517

Ngoc T. T. A., Tu N. C., Ha N. C. & Nga N. T. T., 2021. Study on the invasion activity of bacteriophages against multi-drug-resistant escherichia coli isolated from catfish (Pangasius hypophthalmus). TNU Journal of Science and Technology, 226(05): 05.

Peng Q., Ma Z., Han Q., Xiang F., Wang L., Zhang Y., Zhao Y., Li J., Xian Y. & Yuan Y., 2023. Characterization of bacteriophage vB_KleM_KB2 possessing high control ability to pathogenic Klebsiella pneumoniae. Scientific Reports, 13(1): 9815. https://doi.org/10.1038/ s41598-023-37065-5

Retamales J., Núñez P., Alvarado R., Campan E. D. M., Otto T., Segovia C., Vasquez I. & Santander J., 2022. Characterization of Xanthomonas arboricola pv. Juglandis Bacteriophages against Bacterial Walnut Blight and Field Evaluation. Viruses, 14(7): 7. https://doi.org/10.3390/ v14071380

Shao Y. & Wang I.-N., 2008. Bacteriophage Adsorption Rate and Optimal Lysis Time. Genetics, 180(1): 471–482. https://doi.org/ 10.1534/genetics.108.090100

Tam H. N., Phuong V. T., Thanh L. U. & Nga N. T. T., 2024. Survey of bacteriophage density capable of controlling bacterial wilt caused by Ralstonia solanacearum on chrysanthemum (Chrysanthemum sp.) under net house conditions. Can Tho University Journal of Science, 60: 448–452. https://doi.org/10.22144/ctujos.2024.369

Topka G., Bloch S., Nejman-Faleńczyk B., Gąsior T., Jurczak-Kurek A., Necel A., Dydecka A., Richert M., Węgrzyn G. & Węgrzyn A., 2019. Characterization of Bacteriophage vB-EcoS-95, Isolated From Urban Sewage and Revealing Extremely Rapid Lytic Development. Frontiers in Microbiology: 9. https://doi.org/10.3389/ fmicb.2018.03326

Topka-Bielecka G., Nejman-Faleńczyk B., Bloch S., Dydecka A., Necel A., Węgrzyn A. & Węgrzyn G., 2021. Phage-Bacteria Interactions in Potential Applications of Bacteriophage vB_EfaS-271 against Enterococcus faecalis. Viruses, 13(2): 2. https://doi.org/10.3390/v13020318

Truc G. N. T., Nga N. T. T. & Kieu T. D. T., 2014. Isolation of bacteriophages and evaluation of their effectiveness in controlling rice bacterial blight caused by xanthomonas oryzae pv. oryzae. Can Tho University Journal of Science: 194–203.

Van T. T. B., An V. N. T., Uyen N. T. P., Trong L. V., Thom D. T., Duy V. T., Nhut L. D. M., Truc V. T. T., Tri N. H. & Thanh T. N., 2022. The influence of bacteriophages and various extracts on Vibrio spp. Can Tho University Journal of Science, 58: 232–238. https://doi.org/ 10.22144/ctu.jvn.2022.142

Villalpando-Aguilar J. L., Matos-Pech G., López-Rosas I., Castelán-Sánchez H. G. & Alatorre-Cobos F., 2023. Phage Therapy for Crops: Concepts, Experimental and Bioinformatics Approaches to Direct Its Application. International Journal of Molecular Sciences, 24(1): 1. https://doi.org/10.3390/ijms24010325

Vui N. T. K., Nga N. T. T., Dinh H. K. & Hue N. H., 2019. Evaluation of the efficacy of bacteriophages, plant activators, and chemical drugs for the control of leaf blight disease on green onions caused by Xanthomonas sp. Can Tho University Journal of Science, 55(2): 2. https://doi.org/ 10.22144/ctu.jvn.2019.043

Wang R., You X., Liu X., Fei B., Li Y., Wang D., Zhu R. & Li Y., 2024. Characterization of phage HZY2308 against Acinetobacter baumannii and identification of phage-resistant bacteria. Virology Journal, 21(1): 283. https://doi.org/ 10.1186/s12985-024-02556-y

Wommack K. E., Williamson K. E., Helton R. R., Bench S. R. & Winget D. M., 2009. Methods for the Isolation of Viruses from Environmental Samples. In M. R. J. Clokie & A. M. Kropinski (Eds.), Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions (pp. 3–14). Humana Press. https://doi.org/10.1007/978-1-60327-164-6_1

Xie Y., Wahab L. & Gill J. J., 2018. Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence. Viruses, 10(4): 4. https://doi.org/10.3390/v10040189

Downloads

Published

25-12-2025

How to Cite

Hoang Luan, N., Anh Thi, N. P., Thi Giang, T., & Bich Van, T. T. (2025). Xanthomonas sp. L019 inhibition by bacteriophage isolated from wild rice ( Oryza rufipogon ). Academia Journal of Biology, 47(4), 139–148. https://doi.org/10.15625/2615-9023/22662

Issue

Section

Articles

Similar Articles

<< < 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 > >> 

You may also start an advanced similarity search for this article.