Xanthomonas sp. L019 inhibition by bacteriophage isolated from wild rice ( Oryza rufipogon )
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/22662Keywords:
Biofilm, controlling pathogenic, sustainable agriculture, VietnamAbstract
Bacteriophages are widely distributed in ecosystems, facilitating isolation. The study reported 16 phage strains capable of infecting Xanthomonas sp. L019. The host spectrum survey showed that phage strain B22 infected all 8 host bacterial strains; phage strains 13 and SR1 infected 6 bacterial strains, including Xanthomonas sp. (L19, 12280), Erwinia carotovora (TCDT3), and Ralstonia spp. (OT6, OT4, OT1); phage strains 21, PCR1, and TCDT7 infected 5 bacterial strains, including Xanthomonas sp. (L19, L20, 12280), E. carotovora (TCDT3), and Ralstonia sp. (OT6); and phage strains 2B2 and SR10 infected 4 bacterial strains, including Xanthomonas sp. (L19, 12280), E. carotovora (TCDT3), and Ralstonia sp. (OT6). The study of the lysis pattern of phage strains 13, 21, 3B and B22 showed the formation of clear lysis patterns, typical of lytic phage strains. The turbidimetry assay showed significant phage strain lysis, as indicated by reduced OD values. Investigation of the effect of phage on bacterial density showed that phages reduced it by approximately 1 log CFU/mL. The biofilm degradation test demonstrated significant control by all 4 phage strains against Xanthomonas sp. L019. Phage 13 exhibited the most optimal lytic ability across all 5 time points, reducing bacterial density to 5.88 log CFU/mL and biofilm OD to 0.24, compared to the control value of 0.6. These results highlight the potential of phages as alternative therapeutics, affirming their effectiveness in controlling pathogenic bacteria and contributing to green, sustainable agriculture.
Downloads
References
Abhilash M., Vidya A. G. & Jagadevi T., 2008. Bacteriophage Therapy: A War Against Antibiotic Resistant Bacteria. The Internet Journal of Alternative Medicine, 7(1). https://ispub.com/ijam/7/1/13668
Alves D. R., Gaudion A., Bean J. E., Perez Esteban P., Arnot T. C., Harper D. R., Kot W., Hansen L. H., Enright M. C. & Jenkins A. T. A., 2014. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Applied and Environmental Microbiology, 80(21): 6694–6703. https://doi.org/10.1128/AEM. 01789-14
Büttner D. & Bonas U., 2010. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiology Reviews, 34(2): 107–133. https://doi.org/10.1111/ j.1574-6976.2009.00192.x
Dechamma M. M., Santhosh K. S., Maiti B., Karunasagar I. & Karunasagar I., 2022. Application of novel lytic bacteriophages to control Vibrio parahaemolyticus load in seafood. Journal of Consumer Protection and Food Safety, 17(1): 41–49. https://doi.org/10.1007/s00003-021-01356-8
Dicks L. M. T. & Vermeulen W., 2024. Bacteriophage-Host Interactions and the Therapeutic Potential of Bacteriophages. Viruses, 16(3): 3. https://doi.org/10.3390/ v16030478
Enwuru N. V., Gill J. J., Anttonen K. P., Enwuru C. A., Young Ry., Coker A. O. & Cirillo J. D., 2021. Isolation and characterization of novel phage (Podoviridae ɸParuNE1) and its efficacy against multi-drug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. Beni-Suef University Journal of Basic and Applied Sciences, 10(1): 50. https://doi.org/ 10.1186/s43088-021-00137-4
Gao R., Sun K., Abdalla A. E., Tian Z., An H., Zhang Z., Liu Y., Zeng X., He X. & Fan X., 2024. Isolation, characterization, and preliminary application of three Vibrio phages in controlling Vibrio alginolyticus. LWT, 191: 115638. https://doi.org/10.1016/j.lwt.2023.115638
Goodarzi F., Hallajzadeh M., Sholeh M., Talebi M., Mahabadi V. P. & Amirmozafari N., 2021. Biological characteristics and anti-biofilm activity of a lytic phage against vancomycin-resistant Enterococcus faecium. Iranian Journal of Microbiology, 13(5): 691–702. https://doi.org/10.18502/ ijm.v13i5.7436
Goodridge L. D., 2010. Designing Phage Therapeutics. Bentham Science Publishers. https://doi.org/10.2174/1389 20110790725348
Huy P. Q., Thinh H. C., Nga N. T. T. & Trung P. N. M., 2016. Evaluation of the effectiveness of bacteriophages in controlling rice grain rot disease caused by Burkholderia glumae. Can Tho University Journal of Science, 45: 45. https://doi.org/10.22144/ctu.jvn.2016.527
Islam M. S., Zhou Y., Liang L., Nime I., Liu K., Yan T., Wang X. & Li J., 2019. Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses, 11(9): 9. https://doi.org/10.3390/v11090841
Jurczak-Kurek A., Gąsior T., Nejman-Faleńczyk B., Bloch S., Dydecka A., Topka G., Necel A., Jakubowska-Deredas M., Narajczyk M., Richert M., Mieszkowska A., Wróbel B., Węgrzyn G. & Węgrzyn A., 2016. Biodiversity of bacteriophages: Morphological and biological properties of a large group of phages isolated from urban sewage. Scientific Reports, 6(1): 34338. https://doi.org/10.1038/srep34338
Korzeniowski P., Śliwka P., Kuczkowski M., Mišić D., Milcarz A. & Kuźmińska-Bajor M., 2022. Bacteriophage Cocktail Can Effectively Control Salmonella Biofilm in Poultry Housing. Frontiers in Microbiology: 13. https://doi.org/10.3389/ fmicb.2022.901770
Kropinski A. M., Mazzocco A., Waddell T. E., Lingohr E. & Johnson R. P., 2009a. Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay. In M. R. J. Clokie & A. M. Kropinski (Eds.), Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions (pp. 69–76). Humana Press. https://doi.org/10.1007/978-1-60327-164-6_7
Kropinski A. M., Mazzocco A., Waddell T. E., Lingohr E., & Johnson, R. P. (2009b). Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay. In M. R. J. Clokie & A. M. Kropinski (Eds.), Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions (pp. 69–76). Humana Press. https://doi.org/10.1007/978-1-60327-164-6_7
Luzon-Hidalgo R., Risso V. A., Delgado A., Andrés-León E., Ibarra-Molero B. & Sanchez-Ruiz J. M., 2021. Evidence for a role of phenotypic mutations in virus adaptation. iScience, 24(4): 102257. https://doi.org/10.1016/j.isci.2021.102257
Marin V. R., Ferrarezi J. H., Vieira G. & Sass D. C., 2019. Recent advances in the biocontrol of Xanthomonas spp. World Journal of Microbiology and Biotechnology, 35(5): 72. https://doi.org/ 10.1007/s11274-019-2646-5
Nga N. T. T., Tran T. N., Holtappels D., Ngan N. L., Hao N. P., Vallino M., Tien D. T. K., Khanh-Pham N. H., Lavigne R., Kamei K., Wagemans J. & Jones J. B., 2021. Phage Biocontrol of Bacterial Leaf Blight Disease on Welsh Onion Caused by Xanthomonas axonopodis pv. Allii. Antibiotics, 10(5): 5. https://doi.org/ 10.3390/antibiotics10050517
Ngoc T. T. A., Tu N. C., Ha N. C. & Nga N. T. T., 2021. Study on the invasion activity of bacteriophages against multi-drug-resistant escherichia coli isolated from catfish (Pangasius hypophthalmus). TNU Journal of Science and Technology, 226(05): 05.
Peng Q., Ma Z., Han Q., Xiang F., Wang L., Zhang Y., Zhao Y., Li J., Xian Y. & Yuan Y., 2023. Characterization of bacteriophage vB_KleM_KB2 possessing high control ability to pathogenic Klebsiella pneumoniae. Scientific Reports, 13(1): 9815. https://doi.org/10.1038/ s41598-023-37065-5
Retamales J., Núñez P., Alvarado R., Campan E. D. M., Otto T., Segovia C., Vasquez I. & Santander J., 2022. Characterization of Xanthomonas arboricola pv. Juglandis Bacteriophages against Bacterial Walnut Blight and Field Evaluation. Viruses, 14(7): 7. https://doi.org/10.3390/ v14071380
Shao Y. & Wang I.-N., 2008. Bacteriophage Adsorption Rate and Optimal Lysis Time. Genetics, 180(1): 471–482. https://doi.org/ 10.1534/genetics.108.090100
Tam H. N., Phuong V. T., Thanh L. U. & Nga N. T. T., 2024. Survey of bacteriophage density capable of controlling bacterial wilt caused by Ralstonia solanacearum on chrysanthemum (Chrysanthemum sp.) under net house conditions. Can Tho University Journal of Science, 60: 448–452. https://doi.org/10.22144/ctujos.2024.369
Topka G., Bloch S., Nejman-Faleńczyk B., Gąsior T., Jurczak-Kurek A., Necel A., Dydecka A., Richert M., Węgrzyn G. & Węgrzyn A., 2019. Characterization of Bacteriophage vB-EcoS-95, Isolated From Urban Sewage and Revealing Extremely Rapid Lytic Development. Frontiers in Microbiology: 9. https://doi.org/10.3389/ fmicb.2018.03326
Topka-Bielecka G., Nejman-Faleńczyk B., Bloch S., Dydecka A., Necel A., Węgrzyn A. & Węgrzyn G., 2021. Phage-Bacteria Interactions in Potential Applications of Bacteriophage vB_EfaS-271 against Enterococcus faecalis. Viruses, 13(2): 2. https://doi.org/10.3390/v13020318
Truc G. N. T., Nga N. T. T. & Kieu T. D. T., 2014. Isolation of bacteriophages and evaluation of their effectiveness in controlling rice bacterial blight caused by xanthomonas oryzae pv. oryzae. Can Tho University Journal of Science: 194–203.
Van T. T. B., An V. N. T., Uyen N. T. P., Trong L. V., Thom D. T., Duy V. T., Nhut L. D. M., Truc V. T. T., Tri N. H. & Thanh T. N., 2022. The influence of bacteriophages and various extracts on Vibrio spp. Can Tho University Journal of Science, 58: 232–238. https://doi.org/ 10.22144/ctu.jvn.2022.142
Villalpando-Aguilar J. L., Matos-Pech G., López-Rosas I., Castelán-Sánchez H. G. & Alatorre-Cobos F., 2023. Phage Therapy for Crops: Concepts, Experimental and Bioinformatics Approaches to Direct Its Application. International Journal of Molecular Sciences, 24(1): 1. https://doi.org/10.3390/ijms24010325
Vui N. T. K., Nga N. T. T., Dinh H. K. & Hue N. H., 2019. Evaluation of the efficacy of bacteriophages, plant activators, and chemical drugs for the control of leaf blight disease on green onions caused by Xanthomonas sp. Can Tho University Journal of Science, 55(2): 2. https://doi.org/ 10.22144/ctu.jvn.2019.043
Wang R., You X., Liu X., Fei B., Li Y., Wang D., Zhu R. & Li Y., 2024. Characterization of phage HZY2308 against Acinetobacter baumannii and identification of phage-resistant bacteria. Virology Journal, 21(1): 283. https://doi.org/ 10.1186/s12985-024-02556-y
Wommack K. E., Williamson K. E., Helton R. R., Bench S. R. & Winget D. M., 2009. Methods for the Isolation of Viruses from Environmental Samples. In M. R. J. Clokie & A. M. Kropinski (Eds.), Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions (pp. 3–14). Humana Press. https://doi.org/10.1007/978-1-60327-164-6_1
Xie Y., Wahab L. & Gill J. J., 2018. Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence. Viruses, 10(4): 4. https://doi.org/10.3390/v10040189
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nguyen Hoang Luan, Nguyen Pham Anh Thi, Tran Thi Giang, Tran Thi Bich Van

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Academia Journal of Biology (AJB) is an open-access and peer-reviewed journal. The articles published in the AJB are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits for immediate free access to the articles to read, download, copy, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited (with a link to the formal publication through the relevant DOI), and without subscription charges or registration barriers. The full details of the CC BY-NC-ND 4.0 License are available at https://creativecommons.org/licenses/by-nc-nd/4.0/.
