Deletion of yeast YCA1 gene inhibits mitochondrial respiratory complex activity and induces apoptosis

Van Ngoc Bui, Duc Duy Nguyen
Author affiliations

Authors

DOI:

https://doi.org/10.15625/2615-9023/22493

Keywords:

Apoptosis, ATP, DNA damage, mitochondria, ROS, YCA1

Abstract

Mitochondria play a central role in energy metabolism and the respiratory chain. They also play a major role in programmed cell death or apoptosis. Reactive oxygen species (ROS) are generated through both exogenous and endogenous pathways and pose a significant damage to DNA, lipids, and protein. Mitochondrial DNA (mtDNA) damage could result in loss of expression of mitochondrial polypeptides, inhibition of mitochondrial activity, induction of apoptosis. Thus, the purpose of the present study is to investigate the role of the YCA1 gene by using the BY4741 (wild type) and specific knock-out yeast strains (∆yca1). The activity of this gene in the mitochondrial respiratory chain and cellular apoptosis in response to DNA damage triggered by methyl methanesulfonate (MMS) treatment would be elucidated by using flow cytometry, chromatography, and OxoPlate® assay.

The findings indicated that fully functional yeast caspase-1 encoded by YCA1 significantly attenuates the intracellular ROS level, while deletion of YCA1 (∆yca1) results in gradual ROS accumulation upon MMS treatment, thereby introducing damage to mtDNA, leading to inhibition of mitochondrial activity and oxygen consumption. Subsequently, the absence of YCA1 leads to blockage in the mitochondrial electron transport chain (mtETC), repression of ATP synthesis, and fluctuation of cellular energy status (AEC). Altogether, high mitochondrial activity of the wild type acts as a protective mechanism against oxidative stress (ROS), whereas low mitochondrial activity of the ∆yca1 enhances susceptibility to ROS that strongly induce apoptosis. These findings suggest that fully functional YCA1 plays a major role in the protection of cell from DNA damage, while mutation of the YCA1 gene results in a reduction of the living mutant ∆yca1 cells accompanied with cell nucleic apoptosis.

Downloads

Download data is not yet available.

References

Amigoni L., Frigerio G., Martegani E., Colombo S., 2016. Involvement of Aif1 in apoptosis triggered by lack of Hxk2 in the yeast Saccharomyces cerevisiae. FEMS Yeast Res., 16(3). https://doi.org/10.1093/ femsyr/fow016

Atkinson D. E., 1968. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry, 7(11): 4030−4034. https://doi.org/10.1021/bi00851a033

Belli G., Colomina N., Castells-Roca L., Lorite N. P., 2022. Post-translational modifications of PCNA: Guiding for the best DNA damage tolerance choice. J. Fungi (Basel), 8(6). https://doi.org/10.3390/jof8060621

Berg J. M., Tymoczko J. L., Stryer L., 2002. Biochemistry, Fifth Edition: W.H. Freeman. pp. 1100.

Bui V. N., Le T. H., 2024. Regulation of yeast RAD9 gene in energy charge, intracellular ROS, and cell cycle arrest in response to DNA damage. Vietnam Journal of Biotechnology, 22: 507−522. https://doi.org/ 10.15625/vjbt-21211

Bui V. N., Nguyen T. P. T., Nguyen H. D., Phi Q. T., Nguyen T. N., Chu H. H., 2024. Bioactivity responses to changes in mucus-associated bacterial composition between healthy and bleached Porites lobata corals. J. Invertebr. Pathol., 206: 108164. https://doi.org/10.1016/j.jip.2024. 108164

Canete J. A., Andres S., Munoz S., Zamarreno J., Rodriguez S., Diaz-Cuervo H., Bueno A., Sacristan M. P., 2023. Fission yeast Cdc14-like phosphatase Flp1/Clp1 modulates the transcriptional response to oxidative stress. Sci. Rep., 13(1): 14677. https://doi.org/ 10.1038/s41598-023-41869-w

Canete J. A., Andrés S., Muñoz S., Zamarreño J., Rodríguez S., Díaz-Cuervo H., Bueno A., Sacristán M. P., 2023. Fission yeast Cdc14-like phosphatase Flp1/Clp1 modulates the transcriptional response to oxidative stress. Sci. Rep., 13(1): 14677. https://doi.org/ 10.1038/s41598-023-41869-w

Chenna S., Koopman W. J. H., Prehn J. H. M., Connolly N. M. C., 2022. Mechanisms and mathematical modeling of ROS production by the mitochondrial electron transport chain. Am. J. Physiol. Cell Physiol., 323(1): C69-C83. https://doi.org/10.1152/ajpcell.00455.2021

Du L., Su Y., Sun D., Zhu W., Wang J., Zhuang X., Zhou S., Lu Y., 2008. Formic acid induces Yca1p-independent apoptosis-like cell death in the yeast Saccharomyces cerevisiae. FEMS Yeast Res., 8(4): 531−539. https://doi.org/10.1111/j.1567-1364.2008.00375.x

Gomes M. P., Juneau P., 2016. Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide? Environ. Pollut., 218: 402−409. https://doi.org/10.1016/ j.envpol.2016.07.019

Greetham D., Kritsiligkou P., Watkins R. H., Carter Z., Parkin J., Grant C. M., 2013. Oxidation of the yeast mitochondrial thioredoxin promotes cell death. Antioxid. Redox Signal., 18(4): 376−385. https://doi.org/10.1089/ars.2012.4597

Groth P., Auslander S., Majumder M. M., Schultz N., Johansson F., Petermann E., Helleday T., 2010. Methylated DNA causes a physical block to replication forks independently of damage signalling, O(6)-methylguanine or DNA single-strand breaks and results in DNA damage. J. Mol. Biol., 402(1): 70−82. https://doi.org/ 10.1016/j.jmb.2010.07.010

Khan M. A., Chock P. B., Stadtman E. R., 2005. Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A., 102(48): 17326−17331. https://doi.org/ 10.1073/pnas.0508120102

Kitanovic A., Walther T., Loret M. O., Holzwarth J., Kitanovic I., Bonowski F., Van Bui N., Francois J. M., Wolfl S., 2009. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium. FEMS Yeast Res., 9(4): 535−551. https://doi.org/ 10.1111/j.1567-1364.2009.00505.x

Lam D. K., Sherlock G., 2023. Yca1 metacaspase: diverse functions determine how yeast live and let die. FEMS Yeast Res: 23. https://doi.org/10.1093/femsyr/ foad022

Leadsham J. E., Gourlay C. W., 2010. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol., 11: 92. https://doi.org/ 10.1186/1471-2121-11-92

Lee J. Y., Jun D. Y., Park J. E., Kwon G. H., Kim J. S., Kim Y. H., 2017. Pro-apoptotic role of the human YPEL5 gene identified by functional complementation of a yeast moh1delta mutation. J. Microbiol. Biotechnol., 27(3): 633−643. https://doi.org/ 10.4014/jmb.1610.10045

Lee Y. J., Hoe K. L., Maeng P. J., 2007. Yeast cells lacking the CIT1-encoded mitochondrial citrate synthase are hypersusceptible to heat- or aging-induced apoptosis. Mol. Biol. Cell, 18(9): 3556−3567. https://doi.org/10.1091/mbc. e07-02-0118

Loret M. O., Pedersen L., François J., 2007. Revised procedures for yeast metabolites extraction: application to a glucose pulse to carbon-limited yeast cultures, which reveals a transient activation of the purine salvage pathway. Yeast, 24(1): 47−60. https://doi.org/10.1002/yea.1435

Madeo F., Herker E., Maldener C., Wissing S., Lächelt S., Herlan M., Fehr M., Lauber K., Sigrist S. J., Wesselborg S., Fröhlich K. U., 2002. A caspase-related protease regulates apoptosis in yeast. Mol. Cell., 9(4): 911−917. https://doi.org/10.1016/ s1097-2765(02)00501-4

Mazzoni C., Falcone C., 2008. Caspase-dependent apoptosis in yeast. Biochim. Biophys. Acta., 1783(7): 1320−1327. https://doi.org/10.1016/j.bbamcr.2008.02.015

Mendelow B. V., 2009. Molecular medicine for clinicians (Second Edition ed.). Johannesburg, South Africa: Wits University Press, pp. 300.

Mihoubi W., Sahli E., Gargouri A., Amiel C., 2017. FTIR spectroscopy of whole cells for the monitoring of yeast apoptosis mediated by p53 over-expression and its suppression by Nigella sativa extracts. PLoS One, 12(7): e0180680. https://doi.org/10.1371/ journal.pone.0180680

Muzaffar S., Chattoo B. B., 2017. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae. Apoptosis, 22(3): 463−474. https://doi.org/10.1007/s10495-016-1330-6

Nadalutti C. A., Stefanick D. F., Zhao M. L., Horton J. K., Prasad R., Brooks A. M., Griffith J. D., Wilson S. H., 2020. Mitochondrial dysfunction and DNA damage accompany enhanced levels of formaldehyde in cultured primary human fibroblasts. Sci. Rep., 10(1): 5575. https://doi.org/10.1038/s41598-020-61477-2

Ritter J. B., Genzel Y., Reichl U., 2006. High-performance anion-exchange chromatography using on-line electrolytic eluent generation for the determination of more than 25 intermediates from energy metabolism of mammalian cells in culture. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 843(2): 216−226. https://doi.org/ 10.1016/j.jchromb.2006.06.004

Salmon T. B., Evert B. A., Song B., Doetsch P. W., 2004. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res., 32(12): 3712−3723. https://doi.org/ 10.1093/nar/gkh696

Senoo T., Yamanaka M., Nakamura A., Terashita T., Kawano S., Ikeda S., 2016. Quantitative PCR for detection of DNA damage in mitochondrial DNA of the fission yeast Schizosaccharomyces pombe. J. Microbiol. Methods, 127: 77−81. https://doi.org/10.1016/j.mimet.2016.05.023

Shokolenko I., Venediktova N., Bochkareva A., Wilson G. L., Alexeyev M. F., 2009. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res., 37(8): 2539−2548. https://doi.org/10.1093/ nar/gkp100

Stenberg S., Li J., Gjuvsland A. B., Persson K., Demitz-Helin E., Gonzalez Pena C., Yue J. X., Gilchrist C., Arengard T., Ghiaci P., Larsson-Berglund L., Zackrisson M., Smits S., Hallin J., Hoog J. L., Molin M., Liti G., Omholt S. W., Warringer J., 2022. Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation. Elife: 11. https://doi.org/10.7554/eLife.76095

Van Houten B., Woshner V., Santos J. H., 2006. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst), 5(2): 145−152. https://doi.org/ 10.1016/j.dnarep.2005.03.002

van Soest D. M. K., Polderman P. E., den Toom W. T. F., Keijer J. P., van

Roosmalen M. J., Leyten T. M. F., Lehmann J., Zwakenberg S., De Henau S., van Boxtel R., Burgering B. M. T., Dansen T. B., 2024. Mitochondrial H(2)O(2) release does not directly cause damage to chromosomal DNA. Nat. Commun., 15(1): 2725. https://doi.org/ 10.1038/s41467-024-47008-x

Wang C. Q., Li X., Wang M. Q., Qian J., Zheng K., Bian H. W., Han N., Wang J. H., Pan J. W., Zhu M. Y., 2014. Protective effects of ETC complex III and cytochrome c against hydrogen peroxide-induced apoptosis in yeast. Free Radic. Res., 48(4): 435−444. https://doi.org/ 10.3109/10715762.2014.885116

Waterman D. P., Haber J. E., Smolka M. B., Test T. T., 2020. Checkpoint responses to DNA double-strand breaks. Annu. Rev. Biochem., 89: 103−133. https://doi.org/ 10.1146/annurev-biochem-011520-104722

Yang Y., Gordenin D. A., Resnick M. A., 2010. A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast. DNA Repair (Amst), 9(8): 914−921. https://doi.org/ 10.1016/j.dnarep.2010.06.005

Yao S., Feng Y., Zhang Y., Feng J., 2021. DNA damage checkpoint and repair: From the budding yeast Saccharomyces cerevisiae to the pathogenic fungus Candida albicans. Comput. Struct. Biotechnol. J., 19: 6343−6354. https://doi.org/10.1016/j.csbj. 2021.11.033

Downloads

Published

21-12-2025

How to Cite

Bui, V. N., & Nguyen, D. D. (2025). Deletion of yeast YCA1 gene inhibits mitochondrial respiratory complex activity and induces apoptosis. Academia Journal of Biology, 47(4), 73–85. https://doi.org/10.15625/2615-9023/22493

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.