Decolourization of textile dyes by Schizophyllum commune : an ecofriendly mycoremediation approach to treat wastewater containing textile dye effluents

Khomdram Bijoya Devi, Rahul Malakar, Sangita Tamang
Author affiliations

Authors

  • Khomdram Bijoya Devi Department of Botany, Gauhati University, Guwahati, Assam, India
  • Rahul Malakar Department of Botany, Gauhati University, Guwahati, Assam, India
  • Sangita Tamang Department of Botany, Gauhati University, Guwahati, Assam, India

DOI:

https://doi.org/10.15625/2615-9023/22468

Keywords:

Schizophyllum commune, Congo Red, Methylene Blue, Dye decolourization, mycoremediation

Abstract

Synthetic dyes are extensively used in various industries, especially the textile industry, and their discharge causes severe environmental problems and is harmful to human health. Mushrooms, especially the white rot fungus, have incredible potential for biodegradation of a variety of industrial pollutants due to the presence of enzymes such as lignin peroxidase, manganese peroxidase, laccase, etc. In this study, the common split gill fungus, Schizophyllum commune, collected from the Jiribam district of Manipur, India, was employed for biodegradation/decolourization of two highly toxic and non-degradable commercially used textile dyes, Congo Red and Methylene Blue and showed positive results. The screening for the presence of ligninolytic enzymes was also performed and found to be positive. The dye decolourization study was carried out on Potato Dextrose broth medium supplemented with 0.02% of the respective dyes in 250 mL Erlenmeyer flasks. Each flask was inoculated with the mycelium plugs of each mushroom culture and incubated in stationary condition in a BOD (Biochemical Oxygen Demand) incubator at 25 ± 2 oC. For Congo Red, the dye decolourization percentage was highest on the 5th day of incubation (91.8%), while in the case of Methylene Blue, the dye decolourization percentage was highest on the 3rd day, with 77.67%. The results suggested that S. commune can effectively degrade or decolourize these dyes, showing more potential in the case of Congo Red. It paves the way for this mushroom to be used as an efficient mycoremediation tool for the treatment of wastewater containing textile dye effluents.

Downloads

Download data is not yet available.

References

Ohm R. A., de Jong J. F., Lugones L. G., Aerts A., Kothe E., Stajich J. E. & … Wösten H. A., 2010. Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology, 28(9): 957–963. doi: 10.1038/nbt.1643.

Arboleda Valencia J. W., Valencia Jiménez A., Gonçalves De Siqueira F., Dussan Medina K., Restrepo Franco G. M., Filho E. X. F., … Grossi‐de‐Sa M. F., 2011. Holocellulase activity from Schizophyllum commune grown on bamboo: A comparison with different substrates. Current Microbiology, 63(6): 581–587. doi: 10.1007/s00284-011-0023-1.

Salmon D. N. X., Piva L. C., Binati R. L., Rodrigues C., Vandenberghe L. P. D. S., Soccol C. R. & Spier M. R., 2012. A bioprocess for the production of phytase from Schizophyllum commune: Studies of its optimization, profile of fermentation parameters, characterization and stability. Bioprocess and Biosystems Engineering, 35(7): 1067–1079. doi: 10.1007/s00449-012-0692-6.

Singh J., Singh M. K., Kumar M. & Thakur I. S., 2015. Immobilized lipase from Schizophyllum commune ISTL04 for the production of fatty acids methyl esters from cyanobacterial oil. Bioresource Technology, 188: 214–218. doi: 10.1016/j.biortech.2015.01.086.

Horisawa S., Ando H., Ariga O. & Sakuma Y., 2015. Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune. Bioresource Technology, 197: 37–41. doi: 10.1016/j.biortech.2015.08.031

Wessels J. G., de Vries O. M., Asgeirsdottir S. A. & Springer J., 1991. The thn mutation of Schizophyllum commune, which suppresses formation of aerial hyphae, affects expression of the Sc3 hydrophobin gene. Journal of General Microbiology, 137(10): 2439–2445.

Boyce A. & Walsh G., 2012. Identification of fungal proteases potentially suitable for environmentally friendly cleaning‐in‐place in the dairy industry. Chemosphere, 88(2): 211–218. doi: 10.1016/j.chemos phere.2012.03.022

Singh M. K., Kumar M. & Thakur I. S., 2017. Proteomic characterization and schizophyllan production by Schizophyllum commune ISTL04 cultured on Leucaena leucocephala wood under submerged fermentation. Bioresource Technology, 236: 29–36. doi: 10.1016/ j.biortech.2017.03.170

Jayakumar G. C., Kanth S. V., Chandrasekaran B., Raghava Rao J. & Nair B. U., 2010. Preparation and antimicrobial activity of scleraldehyde from Schizophyllum commune. Carbohydrate Research, 345(15): 2213–2219. doi: 10.1016/j.carres. 2010.07.041

Gupta S., Annepu S. K., Summuna B., Gupta M. & Nair S. A., 2018. Role of mushroom fungi in decolourization of industrial dyes and degradation of agrochemicals. Biology of Macrofungi: 177−190.

Saratale R. G., Gandhi S. S., Purankar M. V., Kurade M. B., Govindwar S. P., Oh S. E., Saratale G. D., 2013. Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS. J Biosci Bioeng, 115: 658–667.

Abe F. R., Machado A. L., Soares A. M. V. M., de Oliveira D. P., Pestana J. L. T., 2019. Life history and behavior effects of synthetic and natural dyes on Daphnia magna. Chemosphere, 236: 124390.

Jusoh N. W. C., Jalil A. A., Triwahyono S., Setiabudi H. D., Sapawe N., Satar M. A. H., Karim A. H., Kamarudin N. H. N., Jusoh R., Jaafar N. F., Salamun N., Efendi J., 2013. Sequential desilication-isomorphous substitution route to prepare mesostructured silica nanoparticles loaded with ZnO and their photocatalytic activity. Appl. Catal. A: Gen., 468: 276–287.

Ajaz M., Shakeel S., Rehman A., 2020. Microbial use for azo dye degradation-a strategy for dye bioremediation. Int. Microbiol., 23(2): 149–159.

Dong H., Guo T., Zhang W., Ying H., Wang P., Wang Y., Chen Y., 2019. Biochemical characterization of a novel azoreductase from Streptomyces sp.: application in eco-friendly decolorization of azo dye wastewater. Int. J. Biol. Macromolecules, 140: 1037–1046.

Lellis B., Favaro-Polonio C. Z., Pamphile J. A., Polonio J. C., 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innovation, 3(2): 275–290.

Marzec A., 2014. The effect of dyes, pigments and ionic liquids on the properties of elastomer composites. Polymers. Université Claude Bernard; - Lyon I; Uniwersytet Łódzki.

Hunger K., 2007. Industrial dyes: chemistry, properties, applications. Wiley-VCH: Weinheim. 2003 pp. 660.

Lee M. J., Ho C. C., Lin H., Wang P., Lu J., 2014. Solubility of Disperse Red 82 and modified Disperse Yellow 119 in supercritical carbon dioxide or nitrous oxide with ethanol as a cosolvent. J. Supercrit. Fluids., 95: 258–264.

Largent D. L., 1986. How to Identify Mushrooms to Genus I: Macroscopic Features. Mad River Press Inc., Eureka.

Singer R., 1986. The Agaricales in modern taxonomy.4th ed. J. Cramer, Weinheim.

Kirk P., Cannon P. F., Minter D. W. and Stalpers J. A., 2008. Ainsworth & Bisby’s Dictionary of the Fungi, 10th edition, CAB International, Wallingford, UK.

Kumla J., Suwannarach N., Jaiyasen A., Bussaba B. and Lumyong S., 2013. Development of an Edible Wild Strain of Thai Oyster Mushroom for Economic Mushroom Production. Chiang Mai Journal of Science, 40: 161−172.

Vijya C. and Reddy R. M., 2012. Bio-delignification ability of locally available edible mushrooms for the biological treatment of crop residues. Indian Journal of Biotechnology, 11: 191−196.

Pointing S., Bucher V. and Vrijmoed L., 2000. Dye decolorization by sub-tropical basidiomycetous fungi and the effect of metals on decolorizing ability. World Journal of Microbiology and Biotechnology 16: 199–205. https://doi.org/10.1023/A:100 8910113322

Sani R. K. and Banerjee U. C., 1999. Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by kurthia sp. Enzyme and Microbial Technology, 24: 433−437.

Doyle J. J., Doyle J. L., 1990. Isolation of plant DNA from fresh tissue. Focus, 12: 13.

Abadulla E., Robra K.-H., Gübitz G. M., Silva L. M., Cavaco-Paulo A., 2000. Enzymatic Decolorization of Textile Dyeing Effluents. Textile Research Journal, 70(5): 409−414. doi: 10.1177/0040517500 07000506

Balaraju K., Gnanadoss J. J., Arokiyaraj S., Agastian P. and Kaviyarasan V., 2007. Production of cellulase and laccase by Pleurotus ostreatus and Laccaria fraternal under submerged and solid state fermentations. ICFAI University Journal of Biotechnology, 1: 23−24.

Chivukula M., Renganathan V., 1995. Phenolic Azo Dye Oxidation by Laccase from Pyricularia oryzae. Applied and Environmental Microbiology, 61(12): 4374−7. doi: 10.1128/aem.61.12.4374-4377.1995

Devi K. B., Malakar R., Kumar A., Sarma N., and Jha D. K., 2023. Ecofriendly Utilization of Lignocellulosic Wastes: Mushroom Cultivation and Value Addition In Kuddus M. et al., (eds) Value-Addition in Agri-Food Industry Waste through Enzyme Technology. Academic Press Elsevier: 237−254.

Getu K. W., Hirpo H. D. and Assefu K. S., 2021. Photocatalytic activity of CdO/ZnO nanocomposite for methylene blue dye and parameters optimisation using response surface methodology. International Journal of Environmental Analytical Chemistry. doi: 10.1080/03067319.2021.1949589

Heinfling A., Martínez M. J., Martínez A. T., Bergbauer M. and Szewzyk U., 1998. Transformation of Industrial Dyes by Manganese Peroxidases from Bjerkandera adusta and Pleurotus eryngii in a Manganese-independent Reaction. Applied and Environmental Microbiology, 64(8): 2788−2793.

Klaus H., Peter M., Wolfgang R., Roderich R., Klaus K., Aloys E., 2005. “Azo Dyes” in Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim. doi: 10.1002/14356007.a03_245

Kumar H., Bhardwaj K., Sharma R., Nepovimova E., Cruz-Martins N., Dhanjal D. S., Singh R., Chopra C., Verma R., Abd-Elsalam K. A., Tapwal A., Musílek K., Kumar D. & Kuča K., 2021. Potential Usage of Edible Mushrooms and Their Residues to Retrieve Valuable Supplies for Industrial Applications. Journal of Fungi: 7.

National Center for Biotechnology Information, 2023. PubChem Compound Summary for CID 11313, Congo red. Retrieved June 1, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Congo-red.

Nyanhongo G. S., Gomes J., Gübitz G. M., Zvauya R., Read J., Steiner W., 2002. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Research, 36(6):1449−56. doi: 10.1016/s0043-1354(01)00365-7

Oladoye P. O., Ajiboye T. O., Omotola E. O., E. Oyinkansola Omotola & Oyewola O. J., 2022. Methylene blue dye: Toxicity and potential technologies for elimination from waste water. Results in engineering, 16. 100678. doi: 10.1016/j.rineng.2022. 100678

Ollikka P., Alhonmäki K., Leppänen V. M., Glumoff T., Raijola T., Suominen I., 1993. Decolorization of Azo, Triphenyl Methane, Heterocyclic, and Polymeric Dyes by Lignin Peroxidase Isoenzymes from Phanerochaete chrysosporium. Applied and Environmental Microbiology, 59(12): 4010−6. doi: 10.1128/aem.59.12. 4010-4016.1993

Radhika R., Jebapriya G. R. and Gnanadoss J., 2014. Decolourization of Synthetic Textile Dyes using the Edible Mushroom Fungi Pleurotus. Pakistan Journal of Biological Sciences, 17(2): 248−253.

Raees A., Bhatti H. N., Alshehri S., Aslam F., Al-Fawzan F. F., Alissa S. A., Iqbal M. and Nazir A., 2023. Adsorption Potential of Schizophyllum commune White Rot Fungus for Degradation of Reactive Dye and Condition Optimization: A Thermodynamic and Kinetic Study. Adsorption Science & Technology. doi: 10.1155/2023/4725710

Sedigheh M., Mojtaba A., Mahmoud T., Najmeh A. K. & Aliakbar D., 2022. Photocatalytic degradation of methylene blue dye using bismuth oxyiodide from aqueous solutions. International Journal of Environmental Analytical Chemistry. doi: 10.1080/03067319.2021.2014463

Shrivastava R., Christian V., Vyas B. R. M., 2005. Enzymatic decolorization of sulfonphthalein dyes. Enzyme and Microbial Technology, 36(2−3): 333−337. doi: 10.1016/j.enzmictec.2004.09.004

Siddiqui S. I., Allehyani E. S., Al-Harbi S. A., Hasan Z., Abomuti M. A., Rajor H. K., Oh S., 2023. Investigation of Congo Red Toxicity towards Different Living Organisms: A Review. Processes, 11(3): 807. https://doi.org/10.3390/pr11030807

Tovar-Herrera O. E., Martha-Paz A. M., Pérez-LLano Y. et al., 2018. Schizophyllum commune: An unexploited source for lignocellulose degrading enzymes. Microbiology Open. 7: e637. https://doi.org/ 10.1002/mbo3.637

Vaksmaa A., Guerrero-Cruz S., Ghosh P., Zeghal E., Hernando-Morales V. and Niemann H., 2023. Role of fungi in bioremediation of emerging pollutants. Frontiers in Marine Science: 10. doi: 10.3389/fmars.2023.1070905

Bhatnagar A., Tamboli E., Mishra A., 2021. Wastewater treatment and Mycoremediation by P. ostreatus mycelium. IOP Conference Series: Earth and Environmental Science, Global Sustainability Conference 1920 April, India. 775(1): 012003

Tamura K., Stecher G., and Kumar S., 2021. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution. https://doi.org/ 10.1093/molbev/msab120

Downloads

Published

21-12-2025

How to Cite

Devi, K. B., Malakar, R., & Tamang, S. (2025). Decolourization of textile dyes by Schizophyllum commune : an ecofriendly mycoremediation approach to treat wastewater containing textile dye effluents. Academia Journal of Biology, 47(4), 11–25. https://doi.org/10.15625/2615-9023/22468

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.