

Vietnam Journal of Science and Technology (2026)

DOI: https://doi.org/10.15625/2525-2518/22956

Service function chain embedding in centralized and

distributed data centers - A comparison

Ma Viet Duc1, Nguyen Trung Kien2, Dao Dai Hiep1,

 Nguyen Tai Hung1, Nguyen Huu Thanh1,*

1School of Electrical and Electronic Engineering, Hanoi University of Science and Technology,

No. 1 Dai Co Viet street, Ha Noi, Viet Nam
2Chair of Communication Networks, University of Würzburg, Sanderring,

 No. 2, Würzburg, 97070, Bavaria, Germany

*Email: thanh.nguyenhuu@hust.edu.vn

Received: 28 May 2025; Accepted for publication: 04 September 2024

Abstract. Cloud computing has played an important role in providing IoT-based services

recently, such as healthcare, smart grid, driving-assistant systems and so forth. In such a paradigm,

there is a tendency to deploy services in the edge-cloud environment, where data centers or

computing clusters are partly moved to the edge of the network to avoid service degradation or

disruption due to the scarcity of physical resources. This paper analyzes and discusses the

advantages and disadvantages of providing virtualized services based on Network Function

Virtualization in two edge-cloud scenarios, in which data centers are in the center or placed at the

edge of the network. Furthermore, a novel Service Function Chain Embedding strategy has been

proposed, which considers centralized or multiple distributed DCs scenarios, and focuses on DC-

internal embedding in fat-tree fabrics under online arrivals and resource fragmentation.

Performance evaluation results show that the proposed strategy can improve the efficiency of the

cloud system in terms of resource utilization and power consumption.

Keywords: distributed cloud, edge–cloud computing, network function virtualization.

Classification numbers: 4.4.1, 4.7.1, 4.7.2.

1. INTRODUCTION

Cloud computing deployment has been ever-increasing recently as it plays a crucial role in

the digital economy. On the one hand, cloud computing enables change in the way digital

businesses are handled by separating the service providers from infrastructure providers by

allowing third parties to virtualize and offer their services dynamically and flexibly on top of the

physical substrate, thus reducing the operation and investment expenditures. Moreover, cloud

computing is one important part of the IoT–Cloud–Big Data–AI ecosystem as it is the

infrastructure to accommodate data and services.

However, the conventional remote cloud paradigm has some drawbacks as it relies on the

data center infrastructure residing at the core of the network. In the context of IoT applications,

many services or data that the cloud system must facilitate come from users or IoT devices located

https://doi.org/10.15625/2525-2518/22956

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

2

at the edge. Thus, a series of difficulties arise as follows: (i) latency occurring due to limited

transmission bandwidth and processing bottleneck at the intermediate network nodes from the

edge to the cloud; (ii) scarcity of resources as network and server resources should be allocated

along the service paths, whose resource availability might be limited; (iii) energy consumption,

because services are usually hosted on high-performance servers in the data centers operating

around the clock, consumed energy takes up a large amount of the total system energy

consumption (Bolla et al., 2010; Nguyen Huu et al., 2013).

In that context, fog and edge computing, a concept first introduced by Cisco some years ago

(Bonomi, 2011; Bonomi et al., 2012) has emerged recently as a solution for the aforementioned

problems. By putting processing and computing power on computing clusters or mini data centers

near the edge, edge computing is about the concept of cloud close to the ground that can reduce

the high-volume data traffic between the edge and the core of the network, thereby minimizing

the disadvantages of cloud computing. Thus, the combination of edge and cloud is often

implemented to utilize both edge and cloud advantages.

In the edge–cloud paradigm, Network Function Virtualization (NFV) enables network

services to be deployed as Service Function Chains (SFCs), where each chain consists of multiple

Virtual Network Functions (VNFs) running on commodity servers. NFV thus provides the

flexibility to instantiate and manage services on demand across distributed infrastructures. The

construction of an SFC, often called service function chaining, involves three main subproblems

(Gil Herrera & Botero, 2016):

1. VNF Chain Composition (VNF-CC or VNF mapping): assigning VNFs to physical

servers based on incoming SFC requests.

2. VNF Forwarding Graph Embedding (VNF-FGE): mapping the logical interconnections

between VNFs onto virtual switches and links.

3. VNF Scheduling (VNFs-SCH): allocating execution slots for VNFs on the available

machines.

In this work, we focus on the first two aspects, VNF-CC and VNF-FGE, which together

form the SFC embedding problem. As illustrated in Figure 1, SFC embedding represents a core

challenge in NFV-enabled data centers: it determines how to efficiently place service chains onto

the physical network substrate while meeting constraints such as resource availability, privacy,

and energy consumption.

Service function chain embedding in centralized and distributed data centers - A comparison

3

Figure 1. Service Function Chain embedding.

Solving the SFC embedding problem is 𝑁𝑃-hard (Cohen et al., 2015). For that reason,

current research mostly follows heuristic and meta-heuristic approaches.

In this research, we focus on energy and resource efficiency of service function chain

embedding approaches in the edge-cloud environments with the following contributions:

● HRE-SFC: a unified, deployable heuristic algorithm that combines Pyramid Pointer

Arrangement (PPA) for VNF ordering with energy-aware server consolidation and

shortest-feasible link embedding, improving SFC acceptance rate.

● Under identical compute budgets and the same traffic topology, we isolate and compare

(i) a centralized cloud, in which a big data center is placed at the core of the network; and

(ii) a distributed cloud, in which several smaller data centers are moved to the edge of the

network. Yielding evidence-based recommendations for when to favor edge distribution

versus core consolidation.

The rest of the paper is organized as follows. Section 2 discusses some related work on

service function chaining. Section 3 formulates SFC embedding problems and power profiling

and modeling. In Section 4, we propose an energy and resource-aware SFC embedding

mechanism. Section 5 shows some evaluation results. The last section concludes the work.

2. RELATED WORK

In this section, we first address some existing work on SFC embedding in general, followed

by work focusing on SFC embedding in edge-cloud environments.

2.1. Service Function Chain Embedding

SFC embedding—jointly mapping VNFs to compute nodes (VNF-CC) and routing virtual

links (VNF-FGE)—is well-known 𝑁𝑃-hard (Cohen et al., 2015). Early heuristics (Zhao et al.,

2018) clarified the problem space but assume static or purely linear chains and therefore leave

three open issues that dominate recent research:

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

4

● Online embedding with fragmentation awareness. Split-placement schemes such as the

online heuristics in (Li et al., 2018; Wang et al., 2024) break a VNF across multiple hosts

when contiguous resources are scarce, raising acceptance at the cost of higher

orchestration complexity.

● Cost/QoS–optimized exact models. Approximation and ILP frameworks now blend

placement, migration, and routing. Pham (2022) maximizes long-term cost efficiency,

while Erbati et al. (2023) satisfy sub-millisecond latency for vehicular workloads.

● Market- and energy-aware provisioning. Wang et al. (2023) introduce an auction-based

CSAM mechanism for multi-cloud SFCs; Lin et al. (2022) and Chintapalli et al.

(2024)(Chintapalli et al., 2024) curb power by shutting down idle devices or parallelizing

SFC segments.

The studies of Li et al. (2018), Wang et al. (2024), Sun, Chen, et al. (2019), Azhdari et al.

(2023) introduce heuristic algorithms for service function chain embedding to solve a joint VNF-

CC and VNF-FGE problem. When performing VNF and graph embedding, if the corresponding

resources on the substrate nodes or links are not sufficient due to the resource fragmentation, the

VNF embedding algorithm splits the virtual network function n into two virtual network functions

that can be embedded in different physical locations, thereby improving the resource availability

and enhancing the embedding acceptance rate. However, splitting the original service chain into

two or more paths may require complex management operations in the virtualization platform to

maintain the state of the service chain. Moreover, the VNF mapping algorithm in this work selects

a server cluster that has more capacity than the others. In some cases, this requires that more

immediate servers in the satisfied cluster be turned on instead of using existing active servers,

which leads to more power consumption.

Deep-reinforcement-learning (DRL) remains the preferred data-driven alternative, with

NFVDeep and its successors delivering near-instant, high-throughput decisions under non-

stationary loads (Dolati et al., 2019; Xiao et al., 2019).

2.2. Service Function Chain Embedding in the Edge-Cloud Environment

The comprehensive review work in (Adoga & Pezaros, 2022; Hantouti et al., 2020) has

shown that various other research works emphasize the need for SFC and its deployment in

environments such as 5G networks, edge-cloud environments. The physical infrastructure hosting

SFCs in the edge-cloud environments are generally categorized into centralized and distributed

data centers, in which the data centers are located in the core of the network or moved to the edge,

respectively.

The research in Sun, Li, et al. (2019) focuses on the problem of energy-efficient orchestration

of online SFC requests in a multi-domain network. The authors proposed the energy-efficient

online SFC request orchestration across multiple domains (EE-SFCO-MD) algorithm for

minimizing energy consumption on SFC Embedding. Pei et al. (2018) study the service function

chain embedding with dynamic VNF placement in a geo-distributed cloud system. They focus on

minimizing the embedding cost for SFC requests and optimizing the number of VNF instances

for the reduction of the total VNF running time. Kaur et al. (2018) have discussed the edge-cloud

interplay and proposed both energy-aware and QoS-guaranteed mechanisms using SDN in the

edge-cloud architecture. The authors proposed handling mechanisms of the network flow and the

trade-off between energy efficiency and QoS. However, this work considers the network

Service function chain embedding in centralized and distributed data centers - A comparison

5

resources and power consumption of network devices but not the power consumption of servers

in data centers, which represents a large amount of total power consumption (Wang et al., 2013).

Lin et al. (2019) deployed AI inference service with many Deep Neural Networks, like an

SFC for end devices with edge cloud computing, called hybrid computing environments. The

optimization algorithm is built with a cost-driven off-loading strategy focusing on reducing the

system cost caused by data transmission by each layer. Zhang et al. (2022) address the SFC

placement problem by reusing VNFs through Deep Reinforcement Learning based approaches.

As a dynamic planning model, this algorithm can reconcile service costs and Quality of Service

(QoS) by considering resource constraints and dynamic distribution analysis of VNFs to improve

the system performance. For SFC migration as same as Pham (2022), Liang et al. (2022) proposed

two SFC migration algorithms to efficiently optimize the average latency of all SFCs in the

Jackson network. Ros et al. propose a DRL-based framework that performs intelligent task

offloading and VNF placement in MEC for IoT networks, achieving significant reductions in

service latency and energy consumption compared to baseline heuristics (Ros et al., 2025).

Poltronieri et al. introduce MECForge (Poltronieri et al., 2022), a Deep Q-Network (DQN) agent

that maximizes the value-of-information delivered to end users as a holistic resource management

criterion. By learning to prioritize important traffic, their approach improves overall user-

perceived utility in 5G-edge scenarios (Poltronieri et al., 2022). The schedule of SFCs aims to

optimize the average latency of all deployed SFCs as well as reasonably fulfill all requirements

that are predefined in policies. Such centralized DRL-based orchestrators can adaptively place

and route SFCs, outperforming static policies on throughput and delay (Ros et al., 2025).

2.3. Discussion

The previously mentioned works primarily focus on high-level evaluations and fall short in

addressing online and dynamic SFC scenarios, as well as the energy costs associated with both

servers and inter-data center networks. To broaden the perspective on the analysis of centralized

versus distributed cloud paradigms, this study presents a quantitative literature-based analysis of

the benefits, drawbacks, and trade-offs between these two architectural approaches. The criteria

for the comparison are as follows:

● Resource efficiency: the edge-cloud substrate should serve a maximum number of SFCs

with a limited number of physical resources, including memory, computing power, link

bandwidth and so forth. Resource utilization is an important factor of cloud infrastructure

since it decides the efficiency of providing cloud services to users.

● Energy efficiency: in cloud computing paradigms, nowhere in the cloud provider

infrastructure, including in access and core networks, is more densely deployed with

servers and network devices than in data centers. Thus, energy efficiency in data centers

is becoming more important as it can greatly reduce operating costs and make the

provider’s network more environmentally friendly.

● Resource utilization, energy efficiency versus complexity: to optimize the resource

utilization or energy efficiency of the system in consideration of network dynamics, the

resource allocation and SFC embedding algorithms should be performed periodically.

During this optimization process, several server migrations are carried out, which would

increase the complexity of the system.

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

6

Unlike previous approaches that increase acceptance by splitting VNFs or virtual links, we

propose HRE-SFC, a heuristic embedding pipeline that preserves service integrity while

effectively handling multi-resource fragmentation. HRE-SFC supports both centralized and

distributed data center architectures, operates in an online manner, and explicitly models power

consumption of both servers and switches, as well as bandwidth constraints in heterogeneous

network environments. At its core, HRE-SFC introduces a novel Pyramid Pointer Arrangement

(PPA) — a pointer-swept VNF ordering strategy that generalizes and interpolates between

traditional FFD and FFI heuristics, without incurring the orchestration complexity of splitting.

Combined with energy-aware VNF consolidation and shortest-feasible-path link embedding, this

design achieves energy-proportional behavior, where power consumption per accepted SFC

remains nearly constant across varying traffic loads — a property not observed in existing

splitting-based baselines.

3. PROBLEM FORMULATION AND SYSTEM MODELING

Following the previous section that outlines general challenges of SFC embedding in various

edge-cloud environments, this section focuses on the specific problem addressed in our work. The

mathematical modeling of this problem is presented afterward.

3.1. Use case scenarios in the edge-cloud environments

In this study, we adopt an edge–cloud paradigm, where the cloud system is designed to

process services and data generated at the IoT level. At this level, devices such as sensors,

actuators, and embedded controllers/computers continuously produce traffic in applications and

cyber-physical systems (CPS), including smart grids, healthcare, autonomous vehicles, and smart

factories. These traffic flows are not modeled in detail; rather, they are treated as stochastic inputs

that naturally enter the network. In this paradigm, an SFC request originates from a service

origination point in an ingress node located at the edge of the network, to the set of VNFs, which

demand Memory (𝑀𝑑) and Compute (𝐶𝑑) resources, are hosted by servers in the data center. Our

analysis therefore focuses on SFC embedding within the data-center infrastructure, while IoT

devices are considered only as traffic sources that trigger such requests. In such a scenario, the

data path of the SFC spans from the edge of the network to the data center, over the core network

as shown in Figure 2. Furthermore, two scenarios are considered, namely:

● Centralized data center scenario, in which a big data center resides at the core of the

network and serves SFC requests coming from all ingress nodes.

● Distributed data centers scenario, in which the big data center is divided into several

smaller data centers that are located near the edge. Each data center serves SFC requests

from local edges.

Service function chain embedding in centralized and distributed data centers - A comparison

7

Figure 2. Service Function Chain originated from the edge.

Here, a comprehensive problem of routing for both data path and resource allocation for

computing units (VNFs) over a substrate network is presented. Our research questions are

twofold:

● Providing similar computer capacity, which DC model, centralized or distributed, is more

resource and energy efficient?

● How to optimize the online SFC embedding problem in a distributed and centralized DC

manner?

These questions are analyzed via a comprehensive simulation, in which a realistic network

topology is considered, representing a distributed and centralized DC system. SFC requests from

end devices originate from ingress points and are mapped into the system via a resource and

energy-efficient SFC placement. The algorithm can handle online requests depending on either

distributed or centralized DC scenario.

3.2. Edge-cloud SFC embedding problem

In this section, the service chain embedding is modeled as an optimization problem focusing

on minimizing the total power consumption of both servers and network devices used to embed

SFC requests, while resource efficiency is improved.

Firstly, the physical substrate can be modeled as a weighted graph 𝐺𝑝 = (𝑆𝑝, 𝑁𝑝, 𝐿𝑝); where

𝑆𝑝 denotes a set of physical servers, 𝑁𝑝 denotes a set of network devices (switches) and 𝐿𝑝

denotes a set of physical links that interconnect servers and network devices. Resources of

physical servers are characterized by memory and CPU capacity. 𝑀𝑎𝑐𝑎𝑝(𝑆𝑖
𝑝

) and 𝐶𝑎𝑐𝑎𝑝(𝑆𝑖
𝑝

)

denote available (or leftover) memory and CPU of 𝑆𝑖
𝑝
, respectively (𝑎𝑐𝑎𝑝 stands for available

capacity). The resource of physical links is bandwidth. Let us denote 𝐵𝑎𝑐𝑎𝑝(𝐿𝑖
𝑝

) as the available

bandwidth of a link 𝐿𝑖
𝑝

.

Next, dynamic SFC requests are considered, in which a series of SFC requests join and leave

the system overtime. We model the 𝑖𝑡ℎ SFC as a weighted graph 𝑅𝑖 = (𝑉𝑁𝐹𝑖 , 𝑉𝐿𝑖, 𝑡𝑖 , 𝑑𝑖), in

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

8

which 𝑡𝑖 and 𝑑𝑖 denote the arrival time and duration of SFC, respectively. 𝑉𝑁𝐹𝑖 denotes a set of

virtual network functions belonging to the 𝑖𝑡ℎ SFC with the corresponding CPU demand

𝐶𝑑(𝑉𝑁𝐹𝑖) and memory demand 𝑀𝑑(𝑉𝑁𝐹𝑖). 𝑉𝐿𝑖 denotes the set of bandwidth demands including

𝑣𝑙𝑖
𝑠,𝑑 ∈ 𝑉𝐿𝑖, which is the bandwidth demand of virtual links from the source 𝑣𝑛𝑓𝑖

𝑠 to the

destination 𝑣𝑛𝑓𝑖
𝑑; {𝑣𝑛𝑓𝑖

𝑠, 𝑣𝑛𝑓𝑖
𝑑} ∈ 𝑉𝑁𝐹𝑖.

Given a SFC request 𝑅𝑖 and a physical data center 𝐺𝑝, embedding 𝑅𝑖 onto 𝐺𝑝 means to find

a subset of 𝑆𝑝, 𝑁𝑝, 𝐿𝑝 at time 𝑡𝑖 that satisfies the requirement of 𝑉𝑁𝐹𝑖 and 𝑉𝐿𝑖. Solving this

embedding problem as Integer Linear Programming is 𝑁𝑃-hard (Schrijver, 1998). In this work

we divide SFC embedding into two sub-problems: (1) virtual network function mapping (VNF-

M) that maps the VNFs of an SFC request onto the physical servers; and (2) virtual link mapping

(VLiM), or the VNF forwarding graph mapping that maps matrix of link demands onto the

substrate links. Let :{ }p p pacap S L G → be a function that returns an available capacity of

physical DC, either servers or network devices. Besides, for each SFC request
thi , let

: p

i i idem VNF VL G → be a function that assigns demand to an element of this SFC. Then, SFC

embedding consists of two functions VNF-M and VLiM as presented in Eq. (1).

: : (,), andp i p P

i i if VNF S k VL N L→ → (1)

These two mapping functions form an embedding for iSFC . Computational resources (CPU

and memory) required by a ij ivnf VNF
 must be lower than those available in the physical server

hosting it. Likewise, the required bandwidth of a virtual link must be lower than the available

bandwidth of all physical links on the path of the DC that the virtual link
,s d

ivl is mapped, these

conditions are expressed in Eqs. (2) and (3)

: () [()]ij i i ij i ijvnf VNF dem vnf acap f vnf  
 (2)

, , ,: () : () ()s d P s d s d p

i i i i i i i ivl VL L k vl dem vl acap L     (3)

Let ,

k

i jx
 be a binary function indicating whether the ,i j ivnf VNF

 is allocated in server k.

Then we have the constraints of the functions 𝑓𝑖 and 𝑘𝑖 as below. One virtual machine is mapped

on only one of the servers set 𝑆𝑝 as in Eq. (4) if successful or none if unsuccessful.

, ,

arg()

1,
p

k

i j i j i

k S

x vnf VNF


  

(4)

Let :{ }p p p p

t S N L G  →state denote the function returning a state at time t of an

element of the substrate network by binary values, which return 1 when turning on (_ON State

) and 0 otherwise (_OFF State). Thus,

● (,)is tstate -state of the physical server
p

is S at time t; (,) {0,1}is t state ,

corresponding to "ON" or "OFF".

Service function chain embedding in centralized and distributed data centers - A comparison

9

● (,)n tstate -state of the physical network device
pn N at time t; (,) {0,1}n t state .

● (,)p

iL tstate -state of the physical links ,()ivp

i i s dL k l at time t; (,) {0,1}p

iL t state .

All physical elements that host the 𝑆𝐹𝐶𝑖 must be turned on as expressed in Eqs. (5) and (6).

() : (,) 1p p

i i i iS f VNF S t  =state (5)

, ,: () : (,) 1s d p s d p

i i i i i ivl VL L k l L t    =state (6)

3.3. Energy modeling

The working state of physical machines, switches, and links in terms of energy consumption

are formulated as follows.

3.3.1. Physical machines

As discussed in our previous work (Nguyen Huu et al., 2013), the total power consumption

model of a physical machine 𝑠𝑖 is defined in Eq. (7). Basically, system power consumption

consists of two components: (i) the baseline power consumption of the machine in idle mode; and

(ii) the power consumption for processing computing jobs, which is proportional to the system

utilization.

() (,) ()
p

i

S i

s S

P t s t U 


=   + state

(7)

where 𝛾 is the linear power coefficient when a machine operates with the computing utilization

U (in percentage), 𝛿 is the baseline power of the device. These parameters are based on Nam et

al. (2017), where 𝛿 = 1.113, 𝛾 = 205.1, and depend on the type of device.

3.3.2. Data center networks

This research makes use of the Fat-tree as the network topology in the data center. Fat-tree

is a common DC network architecture that can reduce the oversubscription ratio and remove the

single point of failures of the hierarchical architecture in the data center network (Al-Fares et al.,

2008; Niranjan Mysore et al., 2009). In a k-ary Fat-tree topology, similar k-port switches are

allocated in the core, aggregation, and edge layer, whereby the aggregation and edge switches are

divided into k Performance Optimized Data Centers (POD), each containing two layers of 𝑘/2

switches. Each switch in the edge layer is connected to 𝑘/2 servers. Thus, a k-ary Fat-Tree data

center supports 𝑘3/4 servers and has a total number of 5𝑘2/4 switches. Figure 3 illustrates a Fat-

tree with 𝑘 = 4 that supports 16 servers.

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

10

Figure 3. Fat-tree topology with k = 4

We assume that the switches and servers can change the clock frequently to adapt to their

working states according to the actual load conditions. For instance, a server is in the

_OFF State if it does not host any VNF, while a switch can adapt its interface capacity

according to the network traffic (Huong et al., 2011; Nam et al., 2017; Thanh et al., 2013). Thus,

as discussed in Nguyen Huu et al. (2013), the power consumption of the data center network,

including switches and links, ()NP t at time t is denoted as the total power of all switches with

static power (or baseline power), staticP , and the power consumption of their interfaces jP
 with

the corresponding operating speed, as expressed in Eq. (8).

1

() (,).[]
p

k

N static j

jn N

P t n t P P
= 

= + state

(8)

 In this work, the power profile of an energy-aware commercial 24-port HP Enterprise

switch (Mahadevan et al., 2009) is used. The power profile of the switch under 4 working states

is summarized in Table 1.

Table 1. Power profile of HP Enterprise switch (Mahadevan et al., 2009)

Operation mode Power (W)

𝑃𝑠𝑡𝑎𝑡𝑖𝑐
39

𝑃10-10 Mbps per port 0.42

𝑃100-100 Mbps per port 0.48

𝑃1000-1 Gbps per port 0.9

3.4. Resource and energy optimization formulation

The main objective of this work is to improve resource utilization and reduce the total energy

consumption of the physical substrate. The first objective is to maximize the system resource

utilization by maximizing the number of accepted SFCs. Let us denote Z as the total number of

VNFs belonging to all accepted SFCs. As indicated in Eq. (9), the system utilization can be

maximized by maximizing Z.

Service function chain embedding in centralized and distributed data centers - A comparison

11

,

,

{ } k p
i i j i

k

i j

VNF VNF vnf VNF s S

Z x
     

=   maximize

(9)

where ,

k

i jx
 is the binary function; , 1k

i jx =
 indicates that resources of server k are successfully

allocated to the ,i j ivnf VNF
. Let ()GP t be the total system power consumption at time t, ()SP t

be the power consumption of all servers and ()NP t be the power consumption of all network

nodes that host the above accepted SFCs. ()GP t can be expressed with () () () G S NP t P t P t= + .

Once a set of devices in the physical substrate is found to satisfy the first objective (Eq. (9)),

the energy-aware SFC embedding algorithm focuses on finding the best solution with the

minimum number of servers and network devices in _ON State . Thus, the second objective of

the optimization problem is defined as Eq. (10):

() () ()G S NP t P t P t= +minimize (10)

The constraints of the SFC embedding objectives are expressed in Eqs. (2), (3) and (4).

4. RESOURCE AND ENERGY-AWARE SERVICE FUNCTION CHAINING

4.1. SFC embedding strategies

As discussed above, solving the optimization problem described in Eqs. (9) and (10) is 𝑁𝑃-

hard and cannot be done in real-time. In this section, we address two heuristic SFC embedding

strategies towards energy efficiency and resource efficiency. In each strategy, energy-aware node

(VNF-CC) and link mapping (VNF-FGE) algorithms are conducted, which will be addressed later

in Section 4.2. We adopted the traditional mapping technique, in which the VNF embedding is

done through the mapping of the VNF on a virtual machine (VM) on a physical server. A separate

VM hosts each VNF. It is also assumed that the SFC requests arrive and leave the system

dynamically. As our goal is to maximize resource utilization while minimizing energy

consumption in distributed and centralized DC contexts, two problems need to be addressed as

follows.

Selecting DC for the data path from end devices to the SFC that resides in DC. As long

routing path often suffers from congested links, in the distributed DC scenarios, our algorithm

prefers the DC that is in proximity of the ingress point.

Selecting group of servers in the chosen DC for VNF mappings. After a DC has been

decided, the whole problem returns to the basic SFC embedding, which influences most of the

energy consumption and resource consumption of the entire system. The following strategies are

applied to achieve our goal of jointly optimizing energy and resources.

4.1.1. Energy efficiency - strategically placing VNFs into physical servers so that overall power

consumption is minimal

As modeled in Section 3.3, general power consumption is mainly attributed to physical

servers and network devices in DCs. To minimize this metric, the overall idea relies on efficiently

placing VNFs into a minimum number of physical servers, and rerouting virtual links through the

least network devices, so that the rest can be put in standby mode. The former problem is modeled

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

12

as the bin-packing problem (Abdul-Minaam et al., 2020), of which our algorithm is inspired by

First-Fit Decreasing (FFD), which has been proven a fast and efficient solution for bin-packing

(Raj et al., 2020). The details of the proposed SFC embedding algorithm will be presented in

Section 4.2.

4.1.2. Resource efficiency - Strategically arranging VNFs in a set of servers so that maximum

number of SFC can be accepted

Figure 4. VNF reordering by In/Out bandwidth and CPU demand (block size). (a) Unsorted; (b) and (c)

decreasing and increasing order; (d)-(f) Pyramid sorting by shifting the peak.

Another objective of this research is resource efficiency. That is, a maximum number of

SFCs can be embedded into a given physical substrate network and servers. This work takes into

account two kinds of resources, which are CPU of servers and bandwidth of physical links. Thus,

the resource-efficient SFC embedding can be formulated as the 2-dimensional bin packing

problem, which is shown to be 𝑁𝑃-hard (Hartmanis, 1982). Instead, we propose a resource-

efficient heuristic SFC embedding strategy, which will be discussed below.

Network bandwidth is the first limiting resource. Packing VNFs onto the fewest active

servers cuts power and, thanks to VNF proximity, slashes inter-server traffic. Heuristics such as

First-Fit Decreasing therefore embed high-bandwidth VNFs first. This fails, however, when the

chosen host is already CPU-bound, forcing the VNF onto a distant node and saturating links

(Figures 4(b)–(c)). Spreading VNFs across the data-center eases link stress (Pei et al., 2018) but

negates energy savings by waking idle machines. Since exact multi-resource placement is 𝑁𝑃-

hard, we propose the Pyramid Pointer Arrangement (PPA) heuristic, which balances traffic

without scattering VNFs across many servers.

Firstly, we define the bandwidth metric of a VNF as the total bandwidth demand, including

incoming and outgoing traffic of all logical links connected to that VNF. To balance bandwidth

and CPU resources of each VNF request, the strategy will apply to both bandwidth demand and

CPU demand, combined into a resource block in 2D space. The combined demand resource of a

VNF is defined as the multiplication of bandwidth and CPU demand, which is called the block

size. Our mapping approach adheres to the following principles:

Service function chain embedding in centralized and distributed data centers - A comparison

13

● The VNF demands are ordered from largest to smallest and the mapping first follows the

First-Fit Decreasing (FFD) strategy, which maps the demand with largest block size first.

● If the mapping fails, the original FFD stops, and the request is rejected. In contrast, our

approach reorders the VNF demand sequence and applies PPA to seek an optimal

solution. PPA explores all possible mappings by combining FFD and First-Fit Increasing

(FFI), this method enhances the likelihood of acceptance.

Figures 4(d)–(f) sketches the PPA workflow. From the unsorted chain in (a), the scheduler

first tries a straightforward FFD pass—placing VNFs from largest to smallest, right-to-left (b). If

that fails, PPA slides a “pointer” along the list and reorders it into a pyramid: VNFs to the left of

the pointer rise in size (FFI), those to the right fall (FFD). Each pointer position (d–f) recenters

demand, spreads bandwidth/CPU load more evenly across links, and increases the likelihood of

a feasible 2-D packing.

(a) SFC request with 6 VNFs, each VNF has a

demand CPU (%) and bandwidth (Mbps)

(b) Physical devices with available CPU (%) and

bandwidth (Mbps)

Figure 5. Example of an SFC request on physical substrate of a Data Center.

PPA can be explained in more detail through the following example. Consider a physical

network with the corresponding CPU and bandwidth capacities in Figure 5(b). The system

receives an SFC demand in Figure 5(a). We first try a one-dimensional FFD with bandwidth and

CPU demands, as shown in Figures 6(a)–(b). FFD fails to find the mappings for all VNFs

belonging to the SFC request. The next attempt is with 2-dimensional FFD that is also not

successful (Figure 6(c)). In this case, VNF 4 is mapped first as it has the largest block size. To

address this, PPA shifts the pointer of VNF 4 one step to the right (Figure 6(d)). This adjustment

successfully finds a final solution that allows the SFC to be fully mapped to the underlying

network and servers. Thus, the possibility of success is enhanced by defining the rule to rearrange

the VNF demands of the SFC request.

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

14

(a) First-fit-decreasing by demand Bandwidth

request

(b) First-fit-decreasing by demand CPU request

(c) PPA at pointer 1 (d) PPA at pointer 2 with successful mapping

Figure 6. Resource mapping outcomes for an SFC request on the physical system under various

arrangement scenarios.

4.2. SFC embedding algorithms

Algorithm 1 Heuristic Resource and Energy Aware SFC Embedding Algorithm

Require: substrate
pG , request

v

jR

1: 𝑜𝑟𝑑𝑒𝑟𝑠 ← PPA(
v

jR
) ▷ VNF-order generator

2: for 𝑜𝑟𝑑 ∈ 𝑜𝑟𝑑𝑒𝑟𝑠 do

3: 𝑔𝑟𝑜𝑢𝑝𝑠 ← VNFMapping(
pG ,

v

jR
, 𝑜𝑟𝑑)

4: for 𝑚𝑎𝑝𝑉𝑁𝐹 ∈ 𝑔𝑟𝑜𝑢𝑝𝑠 do

5: (𝑚𝑎𝑝𝑉𝐿 , 𝑜𝑘) ← GraphEmbedding(
pG ,

v

jR
, 𝑚𝑎𝑝𝑉𝑁𝐹) ▷ reserve resources

6: if 𝑜𝑘 then

7: commit(
pG , 𝑚𝑎𝑝𝑉𝑁𝐹 , 𝑚𝑎𝑝𝑉𝐿)

8: return true ▷ embedding succeeded

9: return false ▷ no feasible placement found

Service function chain embedding in centralized and distributed data centers - A comparison

15

The Heuristic Resource and Energy-Aware SFC Embedding Algorithm, consists of three

procedures, we consolidate our strategy into HRE-SFC, a single pipeline:

(i) PPA ordering. Compute VNF block sizes (CPU and VNF’s neighbor-bandwidth), sweep

a pointer to generate pyramid orderings that balance CPU/bandwidth, and try largest-first

permutations to escape fragmentation.

(ii) Energy-aware VNF mapping. First-fit into minimal server groups (prefer already-ON

machines) to maximize consolidation.

(iii) Link embedding. Route high-bandwidth virtual links first on shortest feasible paths

that minimize incremental switch activations.

The heuristic progress of HRE-SFC is shown in Algorithm 1 through four steps as follows.

● Step 1 (line 2): Upon the arrival of an SFC request
v

jR
, the PPA routine produces a list of

VNF permutations 𝑜𝑟𝑑𝑒𝑟𝑠. Each permutation reshapes inter-VNF bandwidth patterns

and will be examined independently.

● Step 2 (line 3-4): For every order 𝑜𝑟𝑑 ∈ 𝑜𝑟𝑑𝑒𝑟𝑠, VNFMapping enumerates all feasible

server groups 𝑔𝑟𝑜𝑢𝑝𝑠 to map VNFs on physical servers in the DC (details in Procedure

1)

● Step 3 (line 5): Given a particular 𝑚𝑎𝑝𝑉𝑁𝐹, the GraphEmbedding phase tries to route

every virtual link to physical links (details in Procedure 2). It returns a pair (𝑚𝑎𝑝𝑉𝐿 , 𝑜𝑘);

the Boolean flag 𝑜𝑘 is true only if all virtual links embed successfully.

● Step 4 (lines 6-9): At the first successful pair (𝑚𝑎𝑝𝑉𝑁𝐹, 𝑚𝑎𝑝𝑉𝐿), the algorithm commit

the corresponding CPU, memory and bandwidth resources and terminates with (return

true). If link embedding fails, the algorithm continues with the next server group; when

all groups are exhausted, it falls back to the next VNF order. Should every order be tried

without success, the routine exits with (return false).

4.2.1. Pyramid Pointer Arrangements – PPA

As described in Section 4.1, to improve the acceptance rate of SFC embedding, the PPA

heuristic arranges VNFs in a specific order that balances both bandwidth and CPU usage across

the network. The idea is to reorder the VNFs of an incoming SFC request based on neighbor

bandwidth (nB), which captures the sum of all incoming and outgoing virtual link bandwidths

connected to each VNF. Formally, for a VNF
j

ivnf in the
thi SFC, nB is computed as:

,()
j

j j k

n i i

k N

B vnf vl


= 

(11)

where jN
 is the set of neighbor VNFs connected to

j

ivnf via virtual links
,j k

ivl . The block size

of a VNF is defined as the product of its nB and CPU demand dC , reflecting the joint load the

VNF imposes on both compute and network resources.

The PPA procedure then generates alternative VNF orderings by iteratively applying a

pointer-based sorting strategy. Given a list of VNFs and their corresponding block sizes, a pointer

𝑝 is first placed at the position of the VNF with the largest block size. The list is then divided into

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

16

two sub-lists: the left sub-list contains VNFs with smaller block sizes that precede 𝑝, and is sorted

in ascending order; the right sub-list contains VNFs that follow 𝑝 and is sorted in descending

order. These two sub-lists are then concatenated, with the pointer element at the center, to form a

new permutation of the VNF sequence (see Figure 4d-f).

This reordering process is repeated with different values of 𝑝 across the list, producing a set

of candidate VNF arrangements. Each arrangement is subsequently passed to the VNFMapping()

procedure to evaluate its feasibility. This mechanism increases the chances of finding valid

embedding, especially under fragmented resource conditions. However, it also introduces

additional computational complexity due to the multiple permutations that must be evaluated—

an issue that will be discussed in Section 5.

4.2.2. Virtual Network Function Mapping

Procedure 1 VNFMapping(
pG ,

v

jR
, 𝑜𝑟𝑑𝑒𝑟𝑉𝑁𝐹)

1: 𝑙𝑖𝑠𝑡𝑃𝐺 ← ∅ ▷ feasible placements

2: 𝐷𝐺𝑅 ← sortByHop(
pG) ▷ DCs nearest to ingress first

3: for 𝑑𝑐 ∈ 𝐷𝐺𝑅 do

4: for 𝑔𝑟 ∈ serverGroups(𝑑𝑐) do ▷Near → Middle → Far
5: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← ∅, 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 ← ∅, 𝑜𝑘 ← true

6: for 𝑣 ∈ 𝑜𝑟𝑑𝑒𝑟𝑉𝑁𝐹 do

7: 𝑠 ← firstFit(𝑣, 𝑔𝑟, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑)

8: if 𝑠 = 𝑁𝑜𝑛𝑒 then

9: 𝑜𝑘 ← false; break

10: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑠}

11: 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 ← 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 ∪ {𝑣 ↦ 𝑠}
12: if 𝑜𝑘 then

13: 𝑙𝑖𝑠𝑡𝑃𝐺 ← 𝑙𝑖𝑠𝑡𝑃𝐺 ∪ {𝑚𝑎𝑝𝑝𝑖𝑛𝑔}

14: return sortByON(𝑙𝑖𝑠𝑡𝑃𝐺)

Once VNFs have been sorted, this procedure performs VNF-CC that finds possible locations

for VNFs on physical servers in the DC. The virtual link interconnecting two neighbor VNFs

hosted by two servers are classified into: (i) near link, if the link traverses through one edge switch

of the Fat-Tree (see Figure 3); (ii) middle link, in which the virtual link should span over an

aggregation switch; and (iii) far link, in which the link should traverse through a core switch in

the Fat-tree architecture. It is easy to observe that the far link interconnects two VNFs located in

two different PODs, while near and middle links interconnect two VNFs residing in the same

POD.

Furthermore, the servers that host VNFs of an SFC belong to near or middle group if the

data between them are exchanged via near or middle links, respectively. In contrast, the servers

hosting the VNFs are in a far group or mixed group if they belong to two or more than two

separate PODs, respectively. The VNF-mapping phase (Procedure 1) proceeds in four sub-steps,

shown schematically in the pseudocode below:

● Step 1 (line 2-3): The helper sortByHop builds a list of data center candidates 𝐷𝐺𝑅 that

contains every DC whose ingress link can deliver the requested bandwidth of the first

virtual link (see Figures 7(a)–(b)). The list is sorted in ascending hop count so that the

nearest DC is examined first.

Service function chain embedding in centralized and distributed data centers - A comparison

17

● Step 2 (line 4-5): For each chosen DC, serverGroups returns three server groups

ordered by proximity (Near → Middle → Far). Each group provides enough cumulative

CPU and memory to host all VNFs. Working sets 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 and 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 are cleared at

the start of every group.

● Step 3 (line 6-11): VNFs are processed in the prescribed order. The call firstFit places

a VNF on the first unused server in the current group that still meets its CPU/MEM

demand. If no such server exists (line 8), the algorithm abandons the current group and

proceeds to the next one.

● Step 4 (line 12-14): Whenever every VNF is successfully mapped, the placement is

appended to 𝑙𝑖𝑠𝑡𝑃𝐺. After all groups and DCs have been scanned, 𝑙𝑖𝑠𝑡𝑃𝐺 is sorted by the

number of servers already in the _ON State (sortByON). The chosen mapping,

therefore, reuses active machines and minimizes additional power consumption.

4.2.3. VNF Forwarding Graph Embedding

To reduce the consumed energy of Network Function Virtualization Infrastructure, a

Forwarding Graph Embedding in Procedure 2 has been developed based on the concept of Elastic

Tree (Heller et al., 2010). Elastic Tree reduces the power consumption of the data center network

by maintaining a minimal logical topology on top of the Fat-Tree based on actual traffic demands.

Procedure 2 GraphEmbedding(
pG ,

v

jR
, 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑉𝑁𝐹)

1:
v

jL
 ← sortDescBW(

v

jL
) ▷ high-BW links first

2: 𝑟𝑒𝑠𝑢𝑙𝑡 ← ∅

3: for 𝑣𝑙 ∈
v

jL
do

4: (𝑠, 𝑑) ← endpoints(𝑣𝑙, 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑉𝑁𝐹)

5: 𝑝𝑎𝑡ℎ ← findPath(𝑠, 𝑑, 𝑏𝑤(𝑣𝑙),
pG) ▷ shortest feasible route

6: if 𝑝𝑎𝑡ℎ = 𝑁𝑜𝑛𝑒 then

7: return (∅, false) ▷ embedding fails

8: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 ∪ {𝑣𝑙 ↦ 𝑝𝑎𝑡ℎ}

9: return (𝑟𝑒𝑠𝑢𝑙𝑡, true)

Firstly, the matrix of virtual links
v

jL
 belonging to request

v

jR
 is sorted in non-increasing

bandwidth order (sortDescBW). Routing the heaviest flows first helps reserve residual capacity

for lighter ones. For each virtual link 𝑣𝑙 (line 3), the helper endpoints retrieves the physical

servers that host its source and destination VNFs (as decided by the VNF-mapping phase). The

routine findPath then selects the shortest residual-capacity route whose extra active switches

add the least incremental power. When no feasible path exists (line 6), the algorithm aborts

immediately and returns false; control will pass to the next candidate server group produced by

VNF-mapping. If every virtual link is routed successfully, the procedure returns the set 𝑟𝑒𝑠𝑢𝑙𝑡

that maps each 𝑣𝑙 ∈
v

jL
 to its physical path, together with the flag true. The residual network,

therefore, forms the minimal logical topology required to carry the SFC traffic, mirroring the

Elastic-Tree philosophy.

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

18

5. PERFORMANCE EVALUATION

The proposed HRE-SFC and other state-of-the-art algorithms are evaluated under different

distributed and centralized scenarios in the following section.

5.1. Simulation scenarios

5.1.1. Performance criteria

The performance of the SFC embedding strategy is evaluated based on three criteria as

follows:

● Resource efficiency: We use acceptance ratio for evaluation as it indicates how many

incoming SFC requests can be accommodated within given limited resources, such as

bandwidth, CPU, and memory. It is measured by the ratio of the number of accepted

SFCs over requested SFCs in the period of simulation time.

● Energy efficiency: The total power consumption of the edge--cloud substrate, the average

power consumption of an SFC, and of a VNF are investigated according to the system

utilization, which reflects how much system resources (CPU) have been consumed at a

given time.

● Complexity: We evaluate the complexity of HRE-SFC to assess its applicability and

deployability of edge-cloud systems.

5.1.2. Experimental parameters

(a) Centralized topology (b) Distributed topology

Figure 7. Two topology cases - Abilene topology (Instance - Atlanta Network Problem)

We use the Abilene topology provided by SNDLib (Instance - Atlanta Network Problem), a

library of test instances for survivable fixed telecommunication network design, which reflects a

real network widely adopted in research for its realism and publicly available configuration data

(Zhou et al., 2016). The Abilene topology is shown in Figures 7(a)–(b), which has 11 physical

nodes.

The topology of an SFC request is randomly generated using Waxman algorithm (Waxman,

2002) with the probability that there exists a virtual link between two VNFs u and v of an SFC is
(,)/()(,) d u v Lp u v e  −= . The parameters 𝛼 and 𝛽 are in the range of (0,1), d is the distance in

Cartesian coordinates among VNF u and v, L is the maximum distance between any two nodes in

Service function chain embedding in centralized and distributed data centers - A comparison

19

the graph. The parameter 𝛼 presents the probability of a link existing between any two nodes in

a graph, and 𝛽 represents the ratio of long links to short links. In this simulation, we set 𝛼 =

 𝛽 = 0.5 (Fischer et al., 2013) for average connectivity and link distance.

The arrival of SFC requests is modeled as a Poisson process with an average rate of λ SFCs

per hour, a common assumption grounded in prior empirical studies (Sun, Chen, et al., 2019; Sun,

Li, et al., 2019; Zhu et al., 2017). While seemingly simplistic, this approach has proven effective

in capturing the inherent randomness and burstiness of traffic patterns observed in real-world

network environments. The average service time of an SFC is exponentially distributed with 𝑇𝑠 =
2 hours. The number of VNFs per SFC request uniformly varies from 4 to 20. All traffic demands

between VNF pairs are also uniformly distributed between 10 Mbps and 90 Mbps. The computing

utilization usage per VNF is distributed randomly in the range 15 – 30 %.

5.1.3. Experimental scenarios

The advantages and disadvantages of the two following scenarios are to be investigated: (i)

centralized cloud, where a larger data center is placed at the center of the network; and (ii)

distributed cloud, where several smaller data centers are moved nearer to users, at the edge of the

network.

The performance of the system with the same computing capacity is compared. In both

scenarios, 4 ingress nodes are defined, which are Nodes 7, 5, 9, 10 in the Abilene topology (see

Figures 7(a)–(b)). For the centralized DC scenario, a large fat tree topology with k = 10, equivalent

to 250 servers residing at the center in Node 2. On the other hand, in the distributed DC scenario,

4 different DCs are placed near the ingress nodes with a total of 252 servers. Each server has 8

CPUs and 64 GB of memory.

Furthermore, to see the impact of the core network topology on the cloud system

performance, two network setups are considered: (i) limited link capacity, in which the capacity

of the physical links of the core network is limited to 100 Mbps; and (ii) infinite link capacity

(BW=Inf), which is the ideal case, where the capacity of the physical link is infinite.

5.1.4. Baselines

Our proposed Heuristic Resource and Energy Aware SFC Embedding Algorithm (HRE-

SFC) is compared with the two meta-heuristic baselines:

● VNF splitting, in which a VNF can be split up into multiple sub-VNFs based on the

available CPU resources of physical servers. The representative of this strategy is the

Joint Online Composition and Embedding of the VNF Chain (VNFG) (Azhdari et al.,

2023; Li et al., 2018). Doing so increases the chance that VNF, or SFC, can fit into the

available resources, thus increasing the acceptance rate. However, some services cannot

be processed in parallel by multiple functions.

● Virtual link splitting that splits a large virtual link demand into multiple virtual links with

smaller bandwidth demands in case the physical link is bottlenecked. Some work follows

this direction, such as online parallelized SFC Orchestration (ONP) (Sun, Chen, et al.,

2019; Wang et al., 2024).

Splitting functions or links offers clear benefits for SFC embedding, as it allows the

corresponding SFC to be more easily accommodated within the physical substrate. However, as

mentioned earlier in Section 2, splitting VNF or virtual links comes with a trade-off of high

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

20

complexity for the scheduler. In addition, sub-SFCs may not be applicable in most applications,

such as video streaming.

For a comprehensive evaluation, we consider eight experimental scenarios that combine two

data-center architectures (distributed vs. centralized) with three SFC-embedding strategies:

● (i) Dist-HRE-SFC and (ii) Cent-HRE-SFC apply the HRE-SFC algorithm in distributed

and centralized clouds, respectively.

● (iii) Dist-HRE-SFC - BW=Inf and (iv) Cent-HRE-SFC - BW=Inf repeat those two cases

while assuming unlimited core-link bandwidth to isolate network-congestion effects.

● (v) Dist-VNFG and (vi) Cent-VNFG use the Joint Online VNF Chain Composition &

Embedding heuristic (Azhdari et al., 2023; Li et al., 2018) under the two cloud

architectures.

● (vii) Dist-ONP and (viii) Cent-ONP test the Online Paralleled SFC Orchestration method

(Sun, Chen, et al., 2019; Wang et al., 2024) with a splitting threshold 𝑘𝑠𝑢𝑏 = 30 Mbps in

distributed and centralized settings.

5.2. Simulation Results

This section discusses our performance analysis of the proposed strategy with some

algorithms in terms of resources, energy consumption, and complexity.

5.2.1. Resource Efficiency

(a) Acceptance ratio versus system load (b) Acceptance ratio varied with simulation time

with λ = 9 (load = 90 %)

Figure 8. Acceptance ratio under varying system load and over time

Figure 8 shows the distributed architecture consistently achieves higher acceptance ratios

than centralized ones, especially under high load. This improvement stems from reduced link

congestion due to the proximity of edge data centers. Additionally, the HRE-SFC algorithm

maintains a superior acceptance rate thanks to the PPA strategy, which increases flexibility

without requiring service function splitting. In Figure 8(a), the acceptance ratio in different

offered loads (with difference 𝜆) is investigated. There can be observed a huge performance

difference between Centralized and Distributed scenarios, in which the latter always achieves

better results than the former regardless of the SFC embedding algorithm. This is explained as

Service function chain embedding in centralized and distributed data centers - A comparison

21

distributed DCs allow SFC to be placed scattering over the topology, thus preventing the

bandwidth bottleneck that usually occurs when most of the traffic concentrates at one place as in

the case of Centralized DC. The effect is evident when comparing Cent-HRE and Dist-HRE: with

100 Mbps core links, Dist-HRE supports nearly twice as many SFCs, while under unlimited

bandwidth, both scenarios converge. This confirms that, given equal compute capacity,

distributed placement alleviates backbone bottlenecks and accepts more SFCs.

When comparing the SFC algorithms, our proposed HRE-SFC outperforms the others even

without dividing the SFC into smaller ones. This is because HRE employs the Pyramid Pointer

Arrangement (Procedure 1), which shuffles the order of VNFs to reduce interconnections within

the SFC, thereby increasing the likelihood of a successful mapping. The PPA strategy not only

improves the acceptance rate but also avoids splitting the SFC—a process that can be unsuitable

or even detrimental for certain applications, such as stateful services or video streaming.

Figure 8(b) illustrates the decline in acceptance ratio over time as the system continues to

operate. Initially, Dist-HRE maintains an acceptance ratio close to 100 % for the first five hours.

As can be observed, in general, as SFCs dynamically join and leave the system, resources become

increasingly fragmented, making it more difficult to accommodate new VNF requests under the

same load. HRE attempts multiple VNF placement strategies to maximize acceptance, but this

leads to increased computational complexity, which will be discussed later. Compared to Dist-

ONP, Dist-HRE demonstrates slightly higher efficiency, even though ONF splits the original SFC

into multiple sub-SFCs. On the other hand, although the number of servers between the

Centralized and Distributed scenarios, distributed DCs employ more switches (190 vs. 125). This

provides greater link capacity for graph embedding (Section 4.2), which further mitigates

bandwidth fragmentation and raises acceptance ratios in distributed deployments.

Figure 9. Utilization of the system under different load (%)

Figure 9 further presents the utilization of the system at different load levels. As the load

increases, distributed approaches yield better resource utilization due to more flexible VNF

placement and reduced bandwidth fragmentation. HRE-SFC outperforms other methods in both

centralized and distributed setups, validating its effectiveness in balancing resource usage. As the

system load increases from 30 % to 90 %, utilization also increases correspondingly. The

Distributed-HRE (Dist-HRE) approach achieves the highest utilization, followed by Distributed-

ONP (Dist-ONP) and Distributed-VNFG (Dist-VNFG), demonstrating that distributed

architectures can more effectively utilize resources than their centralized counterparts. Among

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

22

centralized methods, Cent-HRE outperforms Cent-ONP and Cent-VNFG, indicating that our

heuristic PPA resource allocation strategies enhance utilization. In addition, as system load

increases, centralized approaches generally exhibit lower resource utilization than distributed

methods, reinforcing the benefits of distributing workload across multiple data centers. This

observation has the same reason that the number of switches in the distributed Fat-Tree-based

data centers is higher than these of the centralized one, so that more VNFs can be accepted.

5.2.2. Energy Efficiency

In terms of energy efficiency, we assess the total power consumption of the entire system as

well as the power consumption of each SFC across different utilization levels, thereby quantifying

the power required for a given amount of resource.

(a) Total system power consumption under

different utilization

(b) Power consumption per serving SFC of the

substrate network with differences utilization

Figure 10. Energy efficiency simulation results

Figure 10(a) demonstrates the total power usage of the system under different utilization,

from low (utilization = 30 %, 𝜆 = 3) to high (utilization = 90 %, 𝜆 = 9). Among the evaluated

algorithms, HRE-SFC emerges as the most energy-efficient in terms of both total system power

consumption and power consumption per SFC, as depicted in Figures 10(a)–(b). Furthermore,

Figure 10b shows that HRE-SFC maintains consistent power consumption per SFC regardless of

utilization, whereas other algorithms exhibit higher power consumption per SFC under low

utilization conditions. This is because HRE-SFC prioritizes consolidating multiple VNFs onto

servers until they reach full capacity, rather than spreading VNFs across underutilized servers

throughout the data center (see line 5 of Procedure 2). As a result, the number of active servers is

proportional to the number of embedded VNFs, which in turn determines the SFC power

consumption. Additionally, for graph embedding, HRE-SFC consistently selects the shortest link

(as indicated in line 7 of Procedure 3), further reducing energy consumption across links and

preventing the activation of unnecessary network switches. Thus, HRE-SFC maintains the energy

proportional property by consuming only the energy required to accommodate the incoming SFC

demands, whereas other approaches consume more energy at the same utilization levels,

particularly under low-load conditions.

In addition to Figure 10(a) shows that total power grows quasi-linearly with the number of

active servers, while Figure 8(a) indicates how many SFCs can be packed for a given CPU

utilization 𝑈. Combining the two curves, we observe an inflection at 𝑈 ≈ 70 %: below this point,

Service function chain embedding in centralized and distributed data centers - A comparison

23

each additional 1 % of CPU load raises total power by only 0.6 %, but above it the slope doubles

because extra VNFs trigger the activation of previously idle servers and their top-of-rack

switches. Hence, improving resource efficiency (higher 𝑈) is beneficial until the cluster crosses

this knee; afterwards energy per SFC increases sharply. This trade-off motivates our hybrid policy

in Section 5, by keeping utilization near 65-75 %, consolidate VNFs aggressively at low load, and

defer edge-DC activation until the knee is reached.

Table 2. Total energy consumption throughout the entire simulation period, utilization 90 %

Scenarios Cent-HRE Dist-HRE Cent-VNFG Dist-VNFG Cent-ONP Dist-ONP

Total Energy

Consumption

(kWh)

6.77 8.53 9.67 10.84 10.36 11.48

Furthermore, as shown in Figure 10(a) and Table 2, for a given utilization level, although

distributed setups yield higher acceptance ratios, centralized data centers demonstrate better

energy efficiency compared to distributed data centers. This is because distributed scenarios

require more active network devices for virtual links interconnecting VNFs, leading to higher

energy consumption of network devices. Overall, HRE-SFC still outperforms others within both

setups.

5.2.3. Complexity

We define complexity as the number of attempts required to move the pointer i in Procedure

1 until a successful mapping of an SFC request is achieved, or until the maximum number of trials

is reached.

Assuming that a 𝑘𝑗 − 𝑎𝑟𝑦 Fat-tree topology is used for data center j; 𝑐 represents the average

number of VNFs in SFC and 𝑙 denotes the average number of virtual links of SFC. Then, the

computation complexity of VNF Mapping is

2 5
()

2

j jk k
c

+
+

, and Graph Embedding is

(2)l k+ . Thus, with n data centers the SFC Embedding computation complexity in one

arrangement is

2

1

9
()

2

n
j j

j

k k
c l

=

+
+ +

, and with i attempts, the computational complexity is

shown in Eq. (12).

2

2

1

9
or ()

2

n
j j

j

k k
i c l ik cl

=

  +
+ +   

   


 (12)

where
max(); [1,]jk k j n=  

. It is noted in centralized scenario, j=1. According to Eq. (12), the

complexity is the same in centralized and distributed scenarios. To evaluate the complexity of the

system, we run simulation with load varied from 10 % – 90 %. At each utilization value, 10

simulations are run, so that the maximum, minimum and average values of i can be derived.

Figure 11 illustrates the results of the pointer value i and the pointer i spectrum under

different utilizations. Throughout the simulation run, it is observed that when utilization is low,

the pointer i value is close to 1, meaning that deploying a new SFC request is easy with a high

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

24

probability of success on the first attempt. However, when utilization reaches 90 %, the pointer i

value tends to increase in certain cases. That is, more arrangement attempts are required to map

the SFC, leading to greater computational complexity.

Figure 11. Average number of mapping trials (pointer i) and spectrum of trial number with different

system utilization.

In certain cases, the value i can have higher values within its spectrum with multiple

deployment attempts. Despite this, the average value i is not excessively large, ensuring that the

algorithm remains computationally manageable when implementing the Section 4.2.

Consequently, Eq. (12) indicates that the computational cost of HRE-SFC grows only polynomial

with the network radix k and linearly with both the number of active SFC requests and the number

of data-center sites. In practice, commercially available leaf/TOR switches expose moderate port

counts (k ≈ 16–64) (Agarwal et al., 2024), so k remains well below the range that would cause

intractable runtimes. Scaling to additional data centers therefore increases complexity only

marginally, making the algorithm tractable even for large, geo-distributed fabrics. Likewise, a

higher arrival rate of SFC requests enlarges the search space linearly, keeping embedding latency

acceptable for both centralized and distributed deployments while sustaining the ever-growing

traffic volumes observed in nowadays data center networks.

In SFC deployment, VNFG and ONP follow different strategies: VNFG splits VNFs into

smaller components, while ONP parallelizes virtual links by splitting their bandwidth. For a

request with c VNFs on an infrastructure of M servers and E network links, both operate in

polynomial time: VNFG maps VNFs in O(M·c) and assigns l virtual links in O(E·l), all in a single

attempt. ONP has a similar complexity, O(M·c + E·l), with only a small constant factor added for

routing a few extra sub-flows when link splitting occurs (as shown in Figure 11). HRE-SFC also

runs in polynomial time, but may perform multiple mapping attempts per request due to its PPA.

This increases runtime by a small constant factor, yet yields higher acceptance ratios and better

resource utilization than VNFG and ONP. In large-scale settings, the modest extra computation

of HRE-SFC is a worthwhile trade-off for its improved embedding success and operational

efficiency.

5.3. Discussions

Based on the evaluation criteria and test scenarios, centralized and distributed DC strategies

outperform each other in specific cases, as summarized below:

Service function chain embedding in centralized and distributed data centers - A comparison

25

● Resource efficiency: Figures 8(a) and 9 show that Dist outperforms Cent thanks to the

proximity of the DC to the edge, reducing link bottlenecks. With sufficient core

bandwidth, HRE-SFC achieves peak efficiency in utilization and acceptance ratio in both

centralized and distributed scenarios (Cent/Dist - HRE BW=inf). However, under

constrained bandwidth, distributed approaches excel by minimizing core reliance,

improving load distribution and scalability. Notably, Dist-HRE surpasses other

algorithms in SFC acceptance. This suggests that the distributed approach of HRE-SFC

is more effective at handling SFC requests, maintaining a higher acceptance ratio

compared to alternative methods.

● Energy efficiency: results represented in Figures 10(a)–(b) and Table 2 show that the

energy consumption of distributed scenarios is higher than centralized ones. HRE-SFC

outperforms other algorithms thanks to its energy-aware strategy. Moreover, the system

energy consumption of HRE-SFC is in proportion to system utilization, while the energy

consumption under low utilization of other algorithms is much higher as they do not

exhibit the energy-proportion property.

● Complexity: the mapping complexity of HRE-SFC, represented by i attempts is higher

than other algorithms (Section 5.2.3). While other algorithms require only one attempt

regardless of success or failure, HRE-SFC can require up to 7 attempts in highly loaded

scenarios.

From the above analysis, HRE-SFC in the distributed cloud could be the best solution as it

can balance resource and energy efficiency well.

Despite the encouraging results, our study has several limitations that highlight important

trade-offs. First, the evaluation relies on a single backbone topology (Abilene) and a Poisson

arrival model; more heterogeneous, bursty traffic patterns and spine-leaf or production WANs

may reveal different behaviors. Second, the energy model neglects the overhead of VNF

migration, state synchronization, and wake-up delays, which may erode part of the savings

reported. Finally, our objectives focus on acceptance ratio and power consumption; end-to-end

latency, SLA compliance, and orchestration costs in large-scale deployments under irregular

conditions remain open questions.

6. CONCLUSIONS

This work discusses the advantages and disadvantages of centralized and distributed edge-

cloud paradigms. A heuristic SFC embedding mechanism is proposed in the work, which can

accommodate the edge-cloud system under network dynamics when SFC requests join and leave

the system over time, and demonstrates its effectiveness in improving both energy consumption

and resource efficiency.

The evaluation revealed several key insights. First, data centers near the edge of the network

help remarkably improve system performance with respect to resource efficiency. With limited

physical resources, a careful plan of data center locations can improve the system's performance

significantly. The physical link capacity is one of the important factors that decides the

performance of the edge-cloud infrastructure. The centralized data center paradigm can

accommodate incoming demands well if sufficient capacities are provided. However, it might be

difficult for an operator to over-provision its network capacity to meet this requirement.

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

26

Second, our Pyramid Pointer Arrangement strategy deals with the resource efficiency

problem better than other approaches. In all centralized and distributed scenarios, the proposed

strategy generally has higher performance in terms of resources and energy. Yet, this advantage

comes at the cost of increased complexity in HRE-SFC.

In future research, edge-cloud data center planning and placement strategy can be studied

and developed to improve the overall system performance in terms of both energy consumption,

QoS guarantees, latency and resource efficiency, targeting hybrid, dynamically reconfigurable

DC topologies that couple a large core cloud with elastic micro-DCs at the edge. Also, it is

interesting to see how different SFC embedding strategies and algorithms can work in a real edge-

cloud environment. This embedding strategy can be practically deployed in Kubernetes-based

NFV orchestration frameworks to improve energy-performance trade-off, especially in multi-

access edge computing (MEC) deployments for 5G/6G networks.

Acknowledgements. This work is funded by Hanoi University of Science and Technology (HUST) under

project T2023-PC-038.

CRediT authorship contribution statement. Ma Viet Duc: Formal analysis, Writing – original draft.

Nguyen Trung Kien: Methodology, Software. Dao Dai Hiep: Data curation, Validation. Nguyen Tai Hung:

Investigation, Validation. Nguyen Huu Thanh: Conceptualization, Methodology, Supervision, Writing –

review & editing.

Declaration of competing interest. The authors declare that there is no conflict of interest in this article.

REFERENCES

Abdul-Minaam, D. S., Al-Mutairi, W. M. E. S., Awad, M. A., & El-Ashmawi, W. H. (2020). An adaptive

fitness-dependent optimizer for the one-dimensional bin packing problem. IEEE Access: practical

innovations, open solutions, 8, 97959-97974. https://doi.org/10.1109/access.2020.2985752

Adoga, H. U., & Pezaros, D. P. (2022). Network function virtualization and service function chaining

frameworks: A comprehensive review of requirements, objectives, implementations, and open

research challenges. Future Internet, 14(2), 59. https://doi.org/10.3390/fi14020059

Agarwal, S., Cai, Q., Agarwal, R., Shmoys, D., & Vahdat, A. (2024). Harmony: A congestion-free

datacenter architecture [Conference paper]. 21st USENIX symposium on networked systems design

and implementation, California, USA.

Al-Fares, M., Loukissas, A., & Vahdat, A. (2008). A scalable, commodity data center network architecture.

ACM SIGCOMM Computer Communication Review, 38(4), 63-74.

https://doi.org/10.1145/1402946.1402967

Azhdari, A., Ebrahimzadeh, A., Afrasiabi, S. N., Szabó, R., Mouradian, C., Li, W., & Glitho, R. H. (2023).

Cost-aware topological decomposition of virtual network function forwarding graphs [Conference

paper]. GLOBECOM 2023 - 2023 IEEE global communications conference, Kuala Lumpur,

Malaysia.

Bolla, R., Bruschi, R., Davoli, F., & Cucchietti, F. (2010). Energy efficiency in the future internet: a survey

of existing approaches and trends in energy-aware fixed network infrastructures. IEEE

Communications Surveys & Tutorials, 13(2), 223-244.

https://doi.org/10.1109/surv.2011.071410.00073

Bonomi, F. (2011). Connected vehicles, the internet of things, and fog computing [Conference paper]. The

eighth ACM international workshop on vehicular inter-networking (VANET), Nevada, USA.

https://doi.org/10.1109/access.2020.2985752
https://doi.org/10.3390/fi14020059
https://doi.org/10.1145/1402946.1402967
https://doi.org/10.1109/surv.2011.071410.00073

Service function chain embedding in centralized and distributed data centers - A comparison

27

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things

[Conference paper]. Proceedings of the first edition of the MCC workshop on Mobile cloud

computing, Helsinki, Finland.

Chintapalli, V. R., Partani, R., Tamma, B. R., & C, S. R. M. (2024). Energy efficient and delay aware

deployment of parallelized service function chains in NFV-based networks. Computer Networks, 243,

110289. https://doi.org/10.1016/j.comnet.2024.110289

Cohen, R., Lewin-Eytan, L., Naor, J. S., & Raz, D. (2015). Near optimal placement of virtual network

functions [Conference paper]. 2015 IEEE conference on computer communications (INFOCOM),

Hong Kong, China.

Dolati, M., Hassanpour, S. B., Ghaderi, M., & Khonsari, A. (2019). DeepViNE: Virtual network embedding

with deep reinforcement learning [Conference paper]. IEEE INFOCOM 2019 - IEEE conference on

computer communications workshops (INFOCOM WKSHPS), Paris, France.

Erbati, M. M., Tajiki, M. M., & Schiele, G. (2023). Service function chaining to support ultra-low latency

communication in NFV. Electronics, 12(18), 3843. https://doi.org/10.3390/electronics12183843

Fischer, A., Botero, J. F., Beck, M. T., de Meer, H., & Hesselbach, X. (2013). Virtual network embedding:

A survey. IEEE Communications Surveys & Tutorials, 15(4), 1888-1906.

https://doi.org/10.1109/surv.2013.013013.00155

Gil Herrera, J., & Botero, J. F. (2016). Resource allocation in NFV: A comprehensive survey. IEEE

Transactions on Network and Service Management, 13(3), 518-532.

https://doi.org/10.1109/tnsm.2016.2598420

Hantouti, H., Benamar, N., & Taleb, T. (2020). Service function chaining in 5G & beyond networks:

Challenges and open research issues. IEEE Network, 34(4), 320-327.

https://doi.org/10.1109/mnet.001.1900554

Hartmanis, J. (1982). Computers and intractability: a guide to the theory of NP-completeness (Michael R.

Garey and David S. Johnson). SIAM Review, 24(1), 90-91. https://doi.org/10.1137/1024022

Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., & McKeown, N.

(2010). Elastictree: Saving energy in data center networks [Conference paper]. NSDI ’10: 7th

USENIX symposium on networked systems design and implementation, California, USA.

Huong, T., Schlosser, D., Nam, P., Jarschel, M., Thanh, N., & Pries, R. (2011). ECODANE-Reducing

energy consumption in data center networks based on traffic engineering [Conference paper]. 11th

würzburg workshop on IP: Joint ITG and euro-NF workshop visions of future generation networks

(EuroView2011), Würzburg, Germany.

Instance - Atlanta Network Problem. SNDlib-Library of test instances for Survivable fixed

telecommunication Network Design.

Kaur, K., Garg, S., Aujla, G. S., Kumar, N., Rodrigues, J. J. P. C., & Guizani, M. (2018). Edge computing

in the industrial internet of things environment: Software-defined-networks-based edge-cloud

interplay. IEEE Communications Magazine, 56(2), 44-51.

https://doi.org/10.1109/mcom.2018.1700622

Li, J., Shi, W., Ye, Q., Zhuang, W., Shen, X., & Li, X. (2018). Online joint VNF chain composition and

embedding for 5G networks [Conference paper]. 2018 IEEE global communications conference

(GLOBECOM), Abu Dhabi, United Arab Emirates.

Liang, W., Cui, L., & Tso, F. P. (2022). Low-latency service function chain migration in edge-core

networks based on open Jackson networks. Journal of Systems Architecture, 124, 102405.

https://doi.org/10.1016/j.sysarc.2022.102405

https://doi.org/10.1016/j.comnet.2024.110289
https://doi.org/10.3390/electronics12183843
https://doi.org/10.1109/surv.2013.013013.00155
https://doi.org/10.1109/tnsm.2016.2598420
https://doi.org/10.1109/mnet.001.1900554
https://doi.org/10.1137/1024022
https://doi.org/10.1109/mcom.2018.1700622
https://doi.org/10.1016/j.sysarc.2022.102405

Ma Viet Duc, Nguyen Trung Kien, Dao Dai Hiep, Nguyen Tai Hung, Nguyen Huu Thanh

28

Lin, B., Huang, Y., Zhang, J., Hu, J., Chen, X., & Li, J. (2019). Cost-driven off-loading for DNN-based

applications over cloud, edge, and end devices. IEEE Transactions on Industrial Informatics, 16(8),

5456-5466. https://doi.org/10.1109/tii.2019.2961237

Lin, R., He, L., Luo, S., & Zukerman, M. (2022). Energy-aware service function chaining embedding in

NFV networks. IEEE Transactions on Services Computing, 16(2), 1158-1171.

https://doi.org/10.1109/tsc.2022.3162328

Mahadevan, P., Sharma, P., Banerjee, S., & Ranganathan, P. (2009). Energy aware network operations

[Conference paper]. INFOCOM workshops 2009, Rio de Janeiro, Brazil.

Nam, T. M., Thanh, N. H., Hieu, H. T., Manh, N. T., Huynh, N. V., & Tuan, H. D. (2017). Joint network

embedding and server consolidation for energy–efficient dynamic data center virtualization.

Computer Networks, 125, 76-89. https://doi.org/10.1016/j.comnet.2017.06.007

Nguyen Huu, T., Pham Ngoc, N., Truong Thu, H., Tran Ngoc, T., Nguyen Minh, D., Nguyen, V. G.,

Nguyen Tai, H., Ngo Quynh, T., Hock, D., & Schwartz, C. (2013). Modeling and experimenting

combined smart sleep and power scaling algorithms in energy-aware data center networks. Simulation

Modelling Practice and Theory, 39, 20-40. https://doi.org/10.1016/j.simpat.2013.05.011

Niranjan Mysore, R., Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan, S., Subramanya,

V., & Vahdat, A. (2009). PortLand: a scalable fault-tolerant layer 2 data center network fabric.

[Conference paper]. Proceedings of the ACM SIGCOMM 2009 conference on data communication,

Barcelona, Spain.

Pei, J., Hong, P., Xue, K., & Li, D. (2018). Efficiently embedding service function chains with dynamic

virtual network function placement in geo-distributed cloud system. IEEE Transactions on Parallel

and Distributed Systems, 30(10), 2179-2192. https://doi.org/10.1109/tpds.2018.2880992

Pham, T.-M. (2022). Optimizing service function chaining migration with explicit dynamic path. IEEE

Access: practical innovations, open solutions, 10, 16992-17002.

https://doi.org/10.1109/access.2022.3150352

Poltronieri, F., Stefanelli, C., Suri, N., & Tortonesi, M. (2022). Value is king: The mecforge deep

reinforcement learning solution for resource management in 5G and beyond. Journal of Network and

Systems Management, 30(4), 63. https://doi.org/10.1007/s10922-022-09672-6

Raj, P. H., Ravi Kumar, P., Jelciana, P., & Rajagopalan, S. (2020). Modified first fit decreasing method for

load balancing in mobile clouds [Conference paper]. 2020 4th international conference on intelligent

computing and control systems (ICICCS), Madurai, India.

Ros, S., Ryoo, I., & Kim, S. (2025). DRL-driven intelligent SFC deployment in MEC workload for dynamic

IoT networks. Sensors, 25(14), 4257. https://doi.org/10.3390/s25144257

Schrijver, A. (1998). Theory of linear and integer programming. John Wiley & Sons.

Sun, G., Chen, Z., Yu, H., Du, X., & Guizani, M. (2019). Online parallelized service function chain

orchestration in data center networks. IEEE Access: practical innovations, open solutions, 7, 100147-

100161. https://doi.org/10.1109/access.2019.2930295

Sun, G., Li, Y., Yu, H., Vasilakos, A. V., Du, X., & Guizani, M. (2019). Energy-efficient and traffic-aware

service function chaining orchestration in multi-domain networks. Future Generation Computer

Systems, 91, 347-360. https://doi.org/10.1016/j.future.2018.09.037

Thanh, N. H., Cuong, B. D., Thien, T. D., Nam, P. N., Thu, N. Q., Huong, T. T., & Nam, T. M. (2013).

ECODANE: A customizable hybrid testbed for green data center networks [Conference paper]. 2013

international conference on advanced technologies for communications (ATC 2013), Ho Chi Minh

City, Vietnam.

https://doi.org/10.1109/tii.2019.2961237
https://doi.org/10.1109/tsc.2022.3162328
https://doi.org/10.1016/j.comnet.2017.06.007
https://doi.org/10.1016/j.simpat.2013.05.011
https://doi.org/10.1109/tpds.2018.2880992
https://doi.org/10.1109/access.2022.3150352
https://doi.org/10.1007/s10922-022-09672-6
https://doi.org/10.3390/s25144257
https://doi.org/10.1109/access.2019.2930295
https://doi.org/10.1016/j.future.2018.09.037

Service function chain embedding in centralized and distributed data centers - A comparison

29

Wang, L., Zhang, F., Aroca, J. A., Vasilakos, A. V., Zheng, K., Hou, C., Li, D., & Liu, Z. (2013).

GreenDCN: A general framework for achieving energy efficiency in data center networks. IEEE

Journal on Selected Areas in Communications, 32(1), 4-15. https://doi.org/10.1109/jsac.2014.140102

Wang, R., Yu, X., Wu, Q., Yi, C., Wang, P., & Niyato, D. (2024). Efficient deployment of partial

parallelized service function chains in CPU+DPU-based heterogeneous NFV platforms. IEEE

Transactions on Mobile Computing, 23(10), 9090-9107. https://doi.org/10.1109/tmc.2024.3357796

Wang, X., Wang, X., Shi, Y., Wu, D., Ma, L., & Huang, M. (2023). Core-selecting auction-based

mechanisms for service function chain provisioning and pricing in NFV markets. Computer Networks,

222, 109557. https://doi.org/10.1016/j.comnet.2023.109557

Waxman, B. M. (2002). Routing of multipoint connections. IEEE Journal on Selected Areas in

Communications, 6(9), 1617-1622. https://doi.org/10.1109/49.12889

Xiao, Y., Zhang, Q., Liu, F., Wang, J., Zhao, M., Zhang, Z., & Zhang, J. (2019). NFVdeep: adaptive online

service function chain deployment with deep reinforcement learning [Conference paper]. Proceedings

of the International Symposium on Quality of Service, Arizona, USA.

Zhang, Y., Zhang, F., Tong, S., & Rezaeipanah, A. (2022). A dynamic planning model for deploying service

functions chain in fog-cloud computing. Journal of King Saud University - Computer and Information

Sciences, 34(10), 7948-7960. https://doi.org/10.1016/j.jksuci.2022.07.012

Zhao, D., Liao, D., Sun, G., & Xu, S. (2018). Towards resource-efficient service function chain deployment

in cloud-fog computing. IEEE Access: practical innovations, open solutions, 6, 66754-66766.

https://doi.org/10.1109/access.2018.2875124

Zhou, H., Tan, L., Zeng, Q., & Wu, C. (2016). Traffic matrix estimation: A neural network approach with

extended input and expectation maximization iteration. Journal of Network and Computer

Applications, 60, 220-232. https://doi.org/10.1016/j.jnca.2015.11.013

Zhu, Z., Lu, H., Li, J., & Jiang, X. (2017). Service function chain mapping with resource fragmentation

avoidance [Conference paper]. GLOBECOM 2017 - 2017 IEEE global communications conference,

Singapore.

https://doi.org/10.1109/jsac.2014.140102
https://doi.org/10.1109/tmc.2024.3357796
https://doi.org/10.1016/j.comnet.2023.109557
https://doi.org/10.1109/49.12889
https://doi.org/10.1016/j.jksuci.2022.07.012
https://doi.org/10.1109/access.2018.2875124
https://doi.org/10.1016/j.jnca.2015.11.013

