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Abstract. Multi-agent systems (MAS) are well-known for overweighting single agents that 
exhibit several complex tasks. This paper introduces a novel approach to modeling and 
controlling an MAS employing a directed and switchable topology. The interaction dynamics of 
the MAS are described through a mass–spring system, where individual agents are modeled as 
point masses and their relative positions are represented by virtual elastic links that produce 
coordination forces. A notion of formation equilibrium is introduced to describe the steady-state 
configuration of the network, which is characterized via the underlying interaction forces. By 
examining these equilibrium conditions, a distributed control strategy is constructed to 
guarantee convergence toward the prescribed geometric configuration. The performance and 
validity of the proposed method are verified through comprehensive simulation studies. 
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1. INTRODUCTION 

Over the past decade, consensus control of multi-agent systems has gained substantial 
research interest, particularly in the context of quadrotor formation missions [1-4]. Compared 
with other categories of unmanned aerial platforms, quadrotors provide notable advantages, 
including agile motion capability, relatively simple mechanical architecture, dependable 
operation, and economic feasibility. Consequently, they have been widely deployed across 
various practical domains such as environmental assessment, atmospheric observation, 
emergency response, reconnaissance, infrastructure inspection, and aerial surveying. Operating 
multiple quadrotors cooperatively offers clear performance enhancements over single-vehicle 
missions, including higher collective payload capacity, distributed sensing functionality, 
extended coverage range, and improved capability in executing sophisticated tasks [5]. 
However, achieving consensus formation behavior introduces significant technical challenges, 
as it involves rigorous treatment of system modeling, distributed control synthesis, and inter-
agent communication mechanisms.  

A broad spectrum of formation control strategies has been reported for cooperative 
quadrotor systems. Early contributions, such as [6, 7], primarily relied on leader-follower 
architectures. Nevertheless, these approaches were typically confined to planar (two-
dimensional) formation scenarios and did not explicitly incorporate inter-agent relative 
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displacement constraints for three-dimensional shape preservation. Alternative studies, for 
example [8], focused on flock formation control but solely addressed shape-keeping without 
mentioning formation pattern-achieving. Other works [9-14] formulated formation control 
under consensus-based frameworks employing either undirected communication graphs or static 
interaction topologies. Although mathematically elegant, such methods often impose substantial 
communication overhead and exhibit limited scalability in large-scale deployments.  

To overcome these shortcomings, more recent investigations have explored formation 
coordination under directed and time-varying interaction graphs. In [15], a consensus-oriented 
strategy was developed for UAV networks with directed switching topologies. Similarly, [16] 
introduced a formation algorithm for second-order multi-agent systems. Despite these efforts, 
challenges persist, with limited research capable of providing a formation control algorithm 
accommodating both directed and switching topologies. The references above underscore the 
ongoing challenge faced by worldwide researchers in achieving formation control for multiple 
UAVs. Indeed, most existing methods are restricted to either undirected graphs or fixed 
topological configurations, with only a limited number accommodating the coexistence of 
directed and switching interactions. 

Motivated by these observations, this study investigates the formation structure and 
associated control law for cooperative quadrotor systems. A novel modeling and control 
framework is developed based on a mass-spring-inspired interaction mechanism, where inter-
agent couplings are represented through virtual elastic forces. Each quadrotor is modeled as a 
rigid body interconnected with neighboring agents via formation springs, leading to a compact 
linear state-space representation of the overall formation dynamics. On this basis, an 
equilibrium-based formation controller is designed using an integral linear quadratic regulator 
(LQR) formulation to ensure optimal regulation of the formation error dynamics. The overall 
architecture adopts a hierarchical structure comprising distributed high-level and low-level 
controllers. Specifically, a distributed algorithm at the high level generates reference trajectories 
for each agent, while low-level PID-based tracking controllers ensure accurate position 
regulation. 

Compared with existing approaches, the proposed framework offers several distinctive 
advantages. First, the mass-spring modeling paradigm provides an intuitive yet rigorous 
representation of formation dynamics, facilitating systematic stability and controllability 
analysis. Second, the proposed distributed control laws explicitly accommodate directed and 
switching communication topologies. Third, the resulting scheme is computationally efficient, 
making it suitable for real-time implementation in resource-constrained UAV platforms. 
Finally, extensive numerical simulations are conducted to validate the effectiveness and 
robustness of the proposed methodology. 

2. PRELIMINARIES AND PROBLEM STATEMENT 

2.1. Two-mass – one-spring system 

 
Figure 1. A two-mass – one-spring system consists of two masses connecting via a spring.  
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Consider a viscous friction-free mechanical system, as in Figure 1. The system consists of 
two masses, namely m1 and m2, connecting to each other via a spring k.  

Let vector  represents the displacement of ,  from a predefined 
origin, and vector  denotes external forces applied to each mass (see 
Figure 1). Thus, we have: 

 (1) 

Manipulating (1), one can get: 

 (2) 

Let us define the following state variable, representing the relative position and velocity 
between the masses. 

 (3) 

Then, Eq. (2) can be reformulated as: 

 (4) 

where, 

 (5) 

2.2 Quadcopter dynamics 

Let , and  respectively represent 
the roll, pitch, and yaw angles (  and 

) of the quadcopter;   and  
position in the inertial coordinate system 
(Figure 2). Let  be the 
inertia momentums in the body-fixed 
coordinate system,  the mass, and the arm 
length of vehicle;  is the 
control input, and  is the gravitational 
acceleration. Then, the quadcopter dynamics 
can be described as follows [17]:  

 
Figure 2. The quadcopter consists of four motors, 

out of which two motors (1 and 3) rotate 
counterclockwise, and the other two  

(2 and 4) rotate clockwise.  
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The control input  is computed from the motor’s forces, , as 
follows 

 (7) 

where,  is the th-motor’s speed;  and  stand for the thrust and drag coefficients. 

2.3. Preliminaries 

Assumption 1 (inter-agent communication topology): The communication graph is assumed to 
be complete and symmetric, implying that every quadrotor can exchange state information with 
all other vehicles.   

Notation 1: Consider a cooperative quadrotor system consisting of n agents. Define the 
index set as . Mi represents ith quadcopter ( ). Without loss of generality, 
M1 is designated as the leader. Let Fij denote the virtual spring force exerted on agent Mi by Mj. 
This interaction satisfies the anti-symmetry condition is denoted by and . The 

resultant formation force acting on agent  is given by . Vector

and   respectively represent the translational position and attitude of .  

2.4. Control objective 

The control scheme of each agent involves two loops, i.e., high-level and low-level 
controllers. While the high-level loop plays the role of generating referenced trajectory , the 
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low-level loop guarantees that the vehicle tracks the references. The integration of the two loops 
is to force the formation error to zero, i.e., . The main results of this work focus 

on finding a novel high-level control law, which will be called formation controller hereafter.  

3. MAIN RESULTS 

3.1. Mass-spring system-based MAS’s dynamics model 

In order to utilize the mass-spring system concept for the dynamic modelling of a MAS, 
the following definitions are introduced.  

Definition 1 (formation spring): A formation spring refers to a virtual coupling established 
between the spatial positions of any two agents within the formation. Each terminal of the 
spring is anchored to one agent (see Fig. 3). The stiffness coefficient of the formation spring is 
denoted by , which characterizes the strength of the inter-agent interaction. The stiffness 
parameter is expressed in units of N/m. 

 
Figure 3. Illustration of a formation spring modeling the interaction between the positions of two agents.  

Definition 2 (formation force): The force generated by a formation spring is referred to as the 
formation force and is denoted by . This force satisfies the following characteristics: 

- The direction of  is colinear with the direction of the formation spring.  

- The magnitude of  varies proportionally with the spring deformation (elongation or 
compression), denoted by .  

 (8) 

Definition 3 (formation equilibrium state of an agent): An agent is said to be in a formation 
equilibrium state when the resultant of all formation forces acting upon it becomes zero. That is,  

 (9) 

Definition 2 indicates that the formation forces are independent of the mass of the agents. 
Thus, for the sake of simplicity, all mass of the agents are set as m, and all formation spring’s 
stiffness are set as .  

 (10) 
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In (10), subtracting the i-th row by the first-row yields:  

 (11) 

Let  

 (12) 

Then 

 (13) 

where,  

 (14) 

3.2. Formation controller 

The formation controller, presented in this subsection, consists of two parts, i.e., the 
reference generator and the formation equilibrium state controller.  

3.2.1. Reference generator 

We next develop the reference generation mechanism for the formation. The interaction 
force exerted on agent  due to its coupling with agent  is modeled as  

 (15) 

Under Assumption 1 (complete bidirectional connectivity), the cumulative formation force 
acting on agent  can be expressed as 

 (16) 

For proper formation maintenance, the resultant formation force on each quadrotor is 
required to be zero during flight. Therefore, the equilibrium condition is formulated as   

 (17) 
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 (18) 

From (14), we have: 

 (19) 

From (16), (18), and (19), the following are obtained:  

 (20) 

This total force  drives  toward the position  which satisfies:  

 (21) 

which can be rewritten as:  

 (22) 

Manipulating (22), we obtain: 

 (23) 

Remark 3: The proposed scheme operates in a distributed manner, where the control law is 
locally executed on each quadrotor. The reference trajectory for every agent is generated using 
its own state feedback together with relative state information obtained from neighboring 
agents.  

3.2.2. Formation equilibrium state controller (FESC) 

To examine the controllability of system (13), the controllability matrix  is constructed 
as:  

 (24) 
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It can be readily verified that has full rank. Hence, system (13) satisfies the controllability 
condition. 

The overall control architecture of each quadrotor is organized in a hierarchical two-layer 
structure, consisting of a high-level controller and a low-level controller, as illustrated in Figure 
4. 

 
Figure 4. The distributed control scheme is implemented on each agent in the high-level controller.  

The FESC is formulated based on an integral linear quadratic regulator (LQR) framework. 
The corresponding control input is expressed as  

 (25) 

where, .  and  are positive gains to be chosen.  

The control laws in (25) can be described by a block diagram, as shown in Figure 5.  

 
Figure 5. Block diagram of the proposed FESC.  

Remark 1: It is obvious that  converges to  because  and  simultaneously converge 

to  and , respectively.  

Remark 2: The inclusion of the integral action in (25) guarantees zero steady-state error under 
constant disturbances or model uncertainties.  

4. SIMULATION RESULTS AND DISCUSSIONS 

4.1. Simulation Setup 

The numerical experiments are carried out under the following assumptions: (i) the attitude 
of each quadrotor is obtained from an inertial navigation system (INS); (ii) altitude 
measurements are provided by a ranging sensor; and (iii) horizontal position data are acquired 
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via a GPS module. The dynamic parameters adopted for the quadrotor model are summarized in 
Table 1.  

To validate the effectiveness of the proposed control strategy, formation flight simulations 
are performed under two distinct communication topologies, denoted as Topology 1 and 
Topology 2, as illustrated in Figure 6. Each green arrow in Figure 6 indicates a directed 
information exchange link between a pair of agents. For instance, in Topo. 1, agent M2 directly 
accesses information from the virtual leader M1, while M3 only has access to information from 
M2, and so forth. Meanwhile, Topo. 2 is configured in a reverse manner, presenting an 
alternative arrangement of inter-communication dynamics. 

The leader’s trajectory is predefined as: . The desired 
formation geometry is specified through prescribed relative displacement vectors between 
agents: , , , and . The initial states, 
including position and velocity, of the quadcopters are provided in Table 2.  

Table 1. Quadcopter dynamic parameters used in the simulations. 

Symbol Value and unit 

m 1.80 kg 

 0.0121 kg.m2 

 0.0119 kg.m2 
 0.0223 kg.m2 
 0.23 m 

g 9.81 m/s2 

 
Figure 6. Two inter-communication topologies (Topo. 1 and Topo. 2) are used in the simulation.  

The agents are desired to form a triangle formation pattern with the leader at the center  
and the others at the corners. 

Table 2. Initial positions of the quadcopters 
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4.2. Simulation results 

In Stage 1, the simulation is conducted over the interval s. At the initial time, all 
quadrotors are initialized at their prescribed starting positions and subsequently begin motion. 
Under the action of the proposed controller, the agents track the reference trajectory and reach 
convergence within a few seconds, as illustrated in Figures 7 and 8. The settling time is 
approximately 7 s for all vehicles. Due to the specified communication topology, transient 
oscillatory behavior is observed in the position responses, as shown in Fig. 8(a). For agent M2, 
the oscillations are 0.1 m, 0.12 m, and 0.11 m along the x-, y-, and z-axis, respectively. 
Quadcopter M3 exhibits oscillations of 0.15 m, 0.08 m, and 0.21 m in the corresponding 
directions. Similarly, the position responses of M4 experiences oscillations of 0.3 m, 0.06 m, and 
0.27 m for its x-, y-, and z-positions. The velocity profiles converge to their steady-state values 
after a brief transient phase, as presented in Fig. 8(b). The rapid stabilization of both position 
and velocity responses enables the formation to be established efficiently while maintaining 
accurate tracking of the desired trajectory.  

 
Figure 7. Formation convergence and three-axis trajectory tracking performance  

of the multi-agent system.  
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(a) (b) 

Figure 8. Position (a) and velocity (b) tracking error performance of the multi-agent system. 

At s, the second simulation phase (Stage 2) is initiated by switching the 
communication topology from Topology 1 to Topology 2. This abrupt topology transition 
induces transient oscillatory responses in the formation dynamics. As shown in Fig. 8, the peak-
to-peak oscillation amplitudes in position tracking remain below 0.1 m along the x-, y-, and z-
positions. Despite the temporary fluctuations, the formation geometry is quickly restored, and 
stable trajectory tracking is re-established within approximately 6 s. In practical deployment 
scenarios, such topology variations may arise from operator intervention or unexpected system 
faults. The fast transient response exhibited by the proposed control strategy suggests strong 
potential for reliable and efficient formation flight operations under switching communication 
structures, particularly in missions involving complex collective tasks.  

5. CONCLUSIONS 

This paper presents a distributed control framework for multi-agent systems based on a 
mass–spring interaction model. The derived formation dynamics are utilized to synthesize the 
formation controller, which is applied to a quadrotor formation flight problem under time-
varying communication topologies. Simulation results confirm that the proposed approach 
achieves accurate formation acquisition, precise trajectory tracking, and robust maintenance of 
the formation shape during topology transitions. It should be noted that the formation 
interaction was modeled using an idealized mass–spring representation, without explicitly 
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accounting for communication delays, packet losses, or external disturbances. Future research 
will focus on the development of robust or adaptive formation control strategies capable of 
compensating for uncertainties and perturbations in practical multi-UAV deployments.  
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