Stable isotope potential of Northern Vietnam stalagmites: A 51-cave survey with the Hendy test and U/Th analysis
Author affiliations
DOI:
https://doi.org/10.15625/2615-9783/24038Keywords:
Northern Vietnam, stalagmites, Oxygen isotope, Hendy test, Paleoclimate proxyAbstract
Northern Vietnam’s karst landscapes offer an untapped potential for paleo-monsoon research, complementing the extensive speleothem records of Southwest China. Here, we surveyed 51 caves across seven provinces, targeting those with humidity exceeding 95% from 2017 to 2024, and collected 127 broken stalagmites to evaluate their stable-isotope potential (δ18O, δ13C) as paleoclimate proxies. Focusing on caves in Hoa Binh and nearby karst-rich regions, we applied Hendy tests to 56 subsamples of eight layers on four stalagmites, NS3, HS3, HS7, and HS16, to assess the isotopic equilibrium conditions. The deposition intervals of the four stalagmites, determined using U/Th dating, range from 36 to 60 thousand years ago (ka). Small 1-sigma variations of ±0.04−0.20‰ in coeval δ18O values across all eight layers suggest deposition under near oxygen isotope equilibrium. Combined with fast growth rates exceeding 0.09 mm/year, this evidence suggests high-resolution potential for paleohydroclimate reconstruction using stalagmite δ18O data. However, one-sigma variations of ±0.04−0.71‰ of coeval δ13C data reflect relatively large carbon isotopic fractionation during the degassing process. It suggests that stalagmite δ13C records from these caves should be carefully evaluated before use in paleoclimate reconstructions.
Downloads
References
Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F., 2018. Present and future Köppen-Geiger climate classification maps at 1 km resolution. Sci Data, 5, 180214. https://doi.org/10.1038/sdata.2018.214.
Cheng H., Edwards R.L., Sinha A., Spötl C., Yi L., Chen S., Kelly M., Kathayat G., Wang X., Li X., Kong X., Wang Y., Ning Y., Zhang H., 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534, 640–646. https://doi.org/10.1038/nature18591.
Cheng H., Lawrence Edwards R., Shen C.-C., Polyak V.J., Asmerom Y., Woodhead J., Hellstrom J., Wang Y., Kong X., Spötl C., Wang X., Calvin Alexander E., 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371–372, 82–91. https://doi.org/10.1016/j.epsl.2013.04.006.
Chiang H.-W., Chen Y.-G., Lee S.-Y., Nguyen D.C., Shen C.-C., Lin Y., Doan L.D., 2025. Speleothem evidence of solar modulation on the south Asia monsoon intensity. npj Climate and Atmospheric Science, 8, 105. https://doi.org/10.1038/s41612-025-00971-8.
Chiang H.W., Lu Y., Wang X., Lin K., Liu X., 2019. Optimizing MC-ICP-MS with SEM protocols for determination of U and Th isotope ratios and 230Th ages in carbonates. Quaternary Geochronology, 50, 75–90. https://doi.org/10.1016/j.quageo.2018.10.003.
Chiang J.C.H., Kong W., Wu C.H., Battisti D.S., 2020. Origins of East Asian Summer Monsoon Seasonality. Journal of Climate, 33, 7945–7965. https://doi.org/10.1175/JCLI-D-19-0888.1.
Cruz F.W., Burns S.J., Karmann I., Sharp W.D., Vuille M., Cardoso A.O., Ferrari J.A., Silva Dias P.L., Viana O., 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature, 434, 63–66. https://doi.org/10.1038/nature03365.
Dorale J.A., Edwards R.L., Calvin A.E.Jr., Shen, C.C., Richards D., Cheng H., 2007. Uranium-Series Dating Of Speleothemes: Current Techniques, Limits amp; Applications, Studies of Cave Sediments, 177–197. https://doi.org/10.1007/978-1-4419-9118-8_10.
Dorale J.A., González L.A., Reagan M.K., Pickett D.A., Murrell M.T., Baker R.G., 1992. A High-Resolution Record of Holocene Climate Change in Speleothem Calcite from Cold Water Cave, Northeast Iowa. Science, 258(5088), 1626–1630. https://doi.org/10.1126/science.258.5088.1626.
Dreybrodt W., Scholz D., 2011. Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite. Geochimica et Cosmochimica Acta, 75, 734–752. https://doi.org/10.1016/j.gca.2010.11.002.
Dykoski C., Edwards R., Cheng H., Yuan D., Cai Y., Zhang M., Lin Y., Qing J., An Z., Revenaugh J., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters, 233, 71–86. https://doi.org/10.1016/j.epsl.2005.01.036.
Edwards R.L., Chen J.H., Wasserburg G.J., 1987. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters, 81, 175–192. https://doi.org/10.1016/0012-821X(87)90154-3.
Fairchild I.J., Smith C.L., Baker A., Fuller L., Spötl C., Mattey D., McDermott F., E.I.M.F., 2006. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews, 75, 105–153. https://doi.org/10.1016/j.earscirev.2005.08.003.
Fairchild I.J., Baker A., 2012. Speleothem science: from process to past environments. John Wiley & Sons. https://doi.org/10.1002/9781444361094.
Ford D., Williams P.W. (Eds.), 2010. Karst hydrogeology and geomorphology, Rev. ed. ed. John Wiley & Sons, Chichester, England A Hoboken, NJ.
Frisia, Silvia, 2015. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies. International Journal of Speleology, 44, 1–16. http://dx.doi.org/10.5038/1827-806X.44.1.1.
Genty D., Blamart D., Ouahdi R., Gilmour M., Baker A., Jouzel J., Van-Exter S., 2003. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature, 421, 833–837. https://doi.org/10.1038/nature01391.
Hanebuth T.J., Saito Y., Tanabe S., Vu Q.L., Ngo Q.T., 2006. Sea levels during late marine isotope stage 3 (or older?) reported from the Red River delta (northern Vietnam) and adjacent regions. Quaternary International, 145, 119–134. https://doi.org/10.1016/j.quaint.2005.07.008.
Henderson G.M., 2006. Caving In to New Chronologies. Science, 313, 620–622. https://doi.org/10.1126/science.1128980.
Hendy C.H., 1971. The isotopic geochemistry of speleothems I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta, 35, 801–824. https://doi.org/10.1016/0016-7037(71)90127-X.
Hu H.-M., Shen C.-C., Cheng H., Woodhead J., Edwards R.L., Zhao J.-X., Huang C.-Y., Lu P.-Y., Chien W.-Y., Wang J., Jia X., Yokoyama Y., Cai Y., Zachariáš J., 2025. Sub-epsilon natural 234U/238U measurements refine the 234U half-life and the U-Th geochronology. Science Advances 11, eadu8117. https://www.science.org/doi/10.1126/sciadv.adu8117.
Jaffey A.H., Flynn K.F., Glendenin L.E., Bentley W.C., Essling A.M., 1971. Precision Measurement of Half-Lives and Specific Activities of U235 and U238. Physical Review C, 4(5), 1889. https://doi.org/10.1103/PhysRevC.4.1889.
Jaffey A.H., Flynn K.F., Glendenin L.E., Bentley W.C., Essling A.M., 1971. Precision Measurement of Half-Lives and Specific Activities of U235 and U238. Physical Review C, 4(5), 1889. https://doi.org/10.1103/PhysRevC.4.1889.
Labonne M., Hillaire-Marcel C., Ghaleb B., Goy J.-L., 2002. Multi-isotopic age assessment of dirty speleothem calcite: an example from Altamira Cave, Spain. Quaternary Science Reviews 21, 1099–1110. https://doi.org/10.1016/S0277-3791(01)00076-2.
Lachniet M.S., 2009. Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews 28, 412-432. https://doi.org/10.1016/j.quascirev.2008.10.021.
Markowska M., Baker A., Andersen M.S., Jex C.N., Cuthbert M.O., Rau G.C., Graham P.W., Rutlidge H., Mariethoz G., Marjo C.E., Treble P.C., Edwards N., 2016. Semi-arid zone caves: Evaporation and hydrological controls on δ18O drip water composition and implications for speleothem paleoclimate reconstructions. Quaternary Science Reviews, 131, 285–301.
McDermott F., 2004. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews, 23, 901–918. https://doi.org/10.1016/j.quascirev.2003.06.021.
Mickler P.J., Stern L.A., Banner J.L., 2006. Large kinetic isotope effects in modern speleothems. GSA Bulletin, 118, 65–81. https://doi.org/10.1130/B25698.1.
Mühlinghaus C., Scholz D., Mangini A., 2009. Modelling fractionation of stable isotopes in stalagmites. Geochimica et Cosmochimica Acta, 73, 7275–7289. https://doi.org/10.1016/j.gca.2009.09.010.
Nguyen D.C., Chen Y.-G., Chiang H.-W., Shen C.-C., Wang X., Doan L.D., Yuan S., Ahmad Lone M., Yu T.-L., Lin Y., Kuo Y.-T., 2020. A decadal-resolution stalagmite record of strong Asian summer monsoon from northwestern Vietnam over the Dansgaard–Oeschger events 2–4. Journal of Asian Earth Sciences, X(3), 100027.https://doi.org/10.1016/j.jaesx.2020.100027.
Nguyen D.C., Lee S.-Y., Chen Y.-G., Chiang H.-W., Shen C.-C., Wang X., Doan L.D., Lin Y., 2022. Precipitation response to Heinrich Event-3 in the northern Indochina as revealed in a high-resolution speleothem record. Journal of Asian Earth Sciences, X(7), 100090. https://doi.org/10.1016/j.jaesx.2022.100090.
Nguyen D.N., Nguyen T.H., 2004. Vietnam climate and climate resources. Publishing house for Agriculture, Hanoi (in Vietnamese).
Phan C.T. (Editor-in-Chief), Le D.A., Le D.B., Dao D.B., Bosaykham V., Bounthong P., Tran D., Nguyen D.D., Hoang T.D., Tran Q.H., Vu K., Som C.K., Pham D.L., Mai N.L., Nguyen Q.M., Phung K.N., Nguyen N., Nouphet R., Nguyen K.Q., Nguyen V.Q., Saykham D.A., Ton D.T., T.V.T., Truyen M.T., Xay T.S.. 1991. Geological map of Cambodia, Laos and Viet Nam on 1:1.000.000. Vietnam Institute of Geosciences and Mineral Resources (in Vietnamese).
Sánchez-Moreno E.M., Font E., Pavón-Carrasco F.J., Dimuccio L.A., Hillaire-Marcel C., Ghaleb B., Cunha L., 2022. Paleomagnetic techniques can date speleothems with high concentrations of detrital material. Scientific Reports, 12, 17936. https://doi.org/10.1038/s41598-022-21761-9.
Scholz D., Hoffmann D.L., 2011. StalAge - An algorithm designed for construction of speleothem age models. Quaternary Geochronology, 6, 369–382. https://doi.org/10.1016/j.quageo.2011.02.002.
Shen C.C., Lawrence E.R., Cheng H., Dorale J.A., Thomas R.B., Bradley M.S., Weinstein S.E., Edmonds H.N., 2002. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology, 185, 165–178. https://doi.org/10.1016/S0009-2541(01)00404-1.
Shen C.-C., Wu C.-C., Cheng H., Lawrence Edwards R., Hsieh Y.-T., Gallet S., Chang C.-C., Li T.-Y., Lam D.D., Kano A., Hori M., Spötl C., 2012. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochimica et Cosmochimica Acta, 99, 71–86. https://doi.org/10.1016/j.gca.2012.09.018.
Sinha A., Cannariato K.G., Stott L.D., Li H.-C., You C.-F., Cheng H., Edwards R.L., Singh I.B., 2005. Variability of Southwest Indian summer monsoon precipitation during the Bølling-Ållerød. Geology, 33, 813–816. https://doi.org/10.1130/G21498.1.
Sterling E.J., 2006. Vietnam: A Natural History. Yale University Press, New Haven. https://doi.org/10.12987/9780300128215.
The Department of Geology and Minerals of Vietnam, 2005. The Geological and minerals map of Vietnam on 1:200.000 (in Vietnamese).
Tran V.T., 2009. Geology and Resources of Vietnam. Publishing House for Science and Technology (in Vietnamese).
University of East Anglia Climatic Research Unit, Harris I.C., Jones P.D., Osborn T., 2024. CRU CY4.08: Climatic Research Unit year-by-year variation of selected climate variables by country version 4.08 (Jan. 1901 - Dec. 2023). NERC EDS Centre for Environmental Data Analysis, date of citation. https://catalogue.ceda.ac.uk/uuid/3b7f475a30a642e9af5323cef748bb00/.
van Oldenborgh G.J., 2020. KNMI Climate Explorer [WWW Document]. URL. https://climexp.knmi.nl/start.cgi. (Accessed 18 March 2025).
Wolf A., Ersek V., Braun T., French A.D., McGee D., Bernasconi S.M., Skiba V., Griffiths M.L., Johnson K.R., Fohlmeister J., Breitenbach S.F.M., Pausata F.S.R., Tabor C.R., Longman J., Roberts W.H.G., Chandan D., Peltier W.R., Salzmann U., Limbert D., Trinh H.Q., Trinh A.D., 2023. Deciphering local and regional hydroclimate resolves contradicting evidence on the Asian monsoon evolution. Nat Commun, 14, 5697. https://doi.org/10.1038/s41467-023-41373-9.
Wortham B.E., Banner J.L., James E.W., Edwards R.L., Loewy S., 2022. Application of cave monitoring to constrain the value and source of detrital 230Th/232Th in speleothem calcite: Implications for U-series geochronology of speleothems. Palaeogeography, Palaeoclimatology, Palaeoecology, 596, 110978. https://doi.org/10.1016/j.palaeo.2022.110978.
Yang H., Johnson K.R., Griffiths M.L., Yoshimura K., 2016. Interannual controls on oxygen isotope variability in Asian monsoon precipitation and implications for paleoclimate reconstructions. JGR Atmospheres, 121, 8410–8428. https://doi.org/10.1002/2015JD024683.
