Landslide susceptibility mapping using Partial Decision Tree-Based hybrid artificial intelligence models

Tran Van Phong, Pham The Truyen, Nguyen Van Duong, Nguyen Le Minh, Nguyen Dang Mau, Indra Prakash, Dao Minh Duc, Dam Nguyen Duc
Author affiliations

Authors

  • Tran Van Phong 1-Institute of Earth Sciences, VAST, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam
  • Pham The Truyen 1-Institute of Earth Sciences, VAST, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam
  • Nguyen Van Duong 1-Institute of Earth Sciences, VAST, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam
  • Nguyen Le Minh 1-Institute of Earth Sciences, VAST, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam
  • Nguyen Dang Mau Vietnam Institute of Meteorology, Hydrology and Climate Change, Hanoi, Vietnam
  • Indra Prakash DDG (R) Geological Survey of India, Gandhinagar 382010, India
  • Dao Minh Duc Institute of Earth Sciences, VAST, Hanoi, Vietnam
  • Dam Nguyen Duc Geotechnical and Artificial Intelligence research group, University of Transport and Technology, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/24023

Keywords:

Machine learning, landslide susceptibility, ensemble models, Partial Decision Trees, Decorate, PART, Vietnam

Abstract

In this research, two newly hybrid machine learning (ML) models, including Decorate Ensemble-based Partial Decision Trees (D-PART) and Bagging Ensemble-based Partial Decision Trees (B-PART), were applied to generate an accurate landslide susceptibility map for the Muong Te area, Lai Chau Province, Vietnam. The performance of the novel models was compared with two single benchmark models, namely Partial Decision Trees (PART) and Logistic Regression (LR), using the popular area under the Receiver Operating Characteristic (ROC) curve (AUC) metric. To construct the training and validation datasets, a spatial database was developed comprising ten landslide conditioning factors associated with the area's topographic, geological, structural, and hydrological characteristics, along with 248 documented historical and recent landslide occurrences. The OneR technique was applied to prioritize the most influential factors and to improve the model's performance. The evaluation results demonstrate that D-PART yielded the strongest predictive performance, with an AUC of 0.801, followed by B-PART (0.795), PART (0.758), and Logistic Regression (0.736). Thus, the novel hybrid model D-PART is a promising technique for constructing a reliable landslide susceptibility map, which can be used for effective planning and management of landslides in landslide-prone areas.

Downloads

Download data is not yet available.

References

Abernethy B., Rutherfurd I.D., 2001. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrological Processes, 15, 63. Doi: 10.1002/hyp.152.

Achour Y., Boumezbeur A., Hadji R., Chouabbi A., Cavaleiro V., Bendaoud E.A., 2017. Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arabian Journal of Geosciences, 10, 1−16.

Achour Y., Pourghasemi H.R., 2020. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geoscience Frontiers, 11(3), 871−883.

Achour Y., Saidani Z., Touati R., Pham Q.B., Pal S.C., Mustafa F., Balik Sanli F., 2021. Assessing landslide susceptibility using a machine learning-based approach to achieving land degradation neutrality. Environmental Earth Sciences, 80, 1−20.

Akila S., Srinivasulu Reddy U., 2018. Cost-sensitive Risk Induced Bayesian Inference Bagging (RIBIB) for credit card fraud detection. Journal of Computational Science, 27, 247−254. https://doi.org/10.1016/j.jocs.2018.06.009.

Althuwaynee O.F., Pradhan B., Park H.-J., Lee J.H.J.C., 2014. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping, 114, 21−36.

Anbalagan R., 1992. Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology, 32, 269−277.

Anis Z., Wissem G., Vali V., Smida H., Essghaier G.M., 2019. GIS-based landslide susceptibility mapping using bivariate statistical methods in North-western Tunisia. Open Geosciences, 11(1), 708−726. Doi: 10.1515/geo-2019-0056.

Asadi Nalivan O., Mousavi Tayebi S.A., Mehrabi M., Ghasemieh H., Scaioni M., 2022. A hybrid intelligent model for spatial analysis of groundwater potential around Urmia Lake, Iran. Stochastic Environmental Research and Risk Assessment, 1−18.

Berger H., Merkl D., Dittenbach M., 2006. Exploiting partial decision trees for feature subset selection in email categorization. In: Proceedings of the 2006 ACM symposium on Applied computing, 1105−1109.

Bordbar M., Paryani S., Pourghasemi H.R., 2022. Chapter 29 - Landslide spatial modeling using a bivariate statistical method in Kermanshah Province, Iran. In: Pourghasemi HR (ed) Computers in Earth and Environmental Sciences. Elsevier, 401−415. https://doi.org/10.1016/B978-0-323-89861-4.00026-9.

Chen W., Peng J., Hong H., Shahabi H., Pradhan B., Liu J., Zhu A.-X., Pei X., Duan Z., 2018. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 626, 1121−1135.

Chen W., Pourghasemi H.R., Panahi M., Kornejady A., Wang J., Xie X., Cao S., 2017a. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology, 297, 69−85. https://doi.org/10.1016/j.geomorph.2017.09.007.

Chen W., Pourghasemi H.R., Zhao Z., 2017b. A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto International, 32(4), 367−385. Doi: 10.1080/10106049.2016.1140824.

Chen W., Xie X., Wang J., Pradhan B., Hong H., Bui D.T., Duan Z., Ma J., 2017c. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA, 151, 147−160. https://doi.org/10.1016/j.catena.2016.11.032.

Dauda K.A., Pradhan B., Uma Shankar B., Mitra S., 2019. Decision tree for modeling survival data with competing risks. Biocybernetics

and Biomedical Engineering, 39(3), 697−708. https://doi.org/10.1016/j.bbe.2019.05.001.

Donnelly S., Verkuilen J., 2017. Empirical logit analysis is not logistic regression. Journal of Memory and Language, 94, 28−42. https://doi.org/10.1016/j.jml.2016.10.005.

Dumitrescu E., Hué S., Hurlin C., Tokpavi S., 2022. Machine learning for credit scoring: Improving logistic regression with nonlinear decision-tree effects. European Journal of Operational Research, 297(3), 1178−1192. https://doi.org/10.1016/j.ejor.2021.06.053.

Duncan J.R., Purnell J.C., Stratton M.S.,

Pavlidakey P.G., Huang C., Phillips C.B., 2020. Negative predictive value of biopsy margins of dysplastic nevi: A single-institution retrospective review. Journal of the American Academy of Dermatology, 82(1), 87−93. https://doi.org/10.1016/j.jaad.2019.07.037.

Dung N.V., Hieu N., Phong T.V., Amiri M., Costache R., Al-Ansari N., Prakash I., Le H.V., Nguyen H.B.T., Pham B.T., 2021. Exploring novel hybrid soft computing models for landslide susceptibility mapping in Son La hydropower reservoir basin. Geomatics, Natural Hazards and Risk, 12(1), 1688−1714.

Eckley C.A., Tangerina R., 2021. Sensitivity, Specificity, and Reproducibility of the Brazilian Portuguese Version of the Reflux Symptom Index. Journal of Voice, 35(1), 161.e115−161.e119. https://doi.org/10.1016/j.jvoice.2019.08.012.

Ercanoglu M., Gokceoglu C., 2002. Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 41(6), 720−730. Doi:10.1007/s00254-001-0454-2.

Exarchos T.P., Tzallas A.T., Baga D., Chaloglou D., Fotiadis D.I., Tsouli S., Diakou M., Konitsiotis S., 2012. Using partial decision trees to predict Parkinson's symptoms: A new approach for diagnosis and therapy in patients suffering from Parkinson's disease. Computers in

Biology and Medicine, 42(2), 195−204. https://doi.org/10.1016/j.compbiomed.2011.11.008.

Feizizadeh B., Shadman Roodposhti M., Jankowski P., Blaschke T., 2014. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Computers & Geosciences, 73, 208−221. https://doi.org/10.1016/j.cageo.2014.08.001.

Freyer G., Ligneau B., Tranchand B., Ardiet C., Souquet P.-J., Court-Fortune I., Riou R., Rebattu P., Morignat E., Boissel J.-P., Trillet-Lenoir V., Girard P., 2001. The prognostic value of etoposide area under the curve (AUC) at first chemotherapy cycle in small cell lung cancer patients: a multicenter study of the groupe Lyon-Saint-Etienne d'Oncologie Thoracique (GLOT). Lung Cancer, 31(2), 247−256. https://doi.org/10.1016/S0169-5002(00)00174-4.

García-Rodríguez M.J., Malpica J.A., 2010. Assessment of earthquake-triggered landslide susceptibility in El Salvador based on an Artificial Neural Network model. Nat Hazards Earth Syst Sci., 10(6), 1307−1315. Doi:10.5194/nhess-10-1307-2010.

Ghazvini K., Yousefi M., Firoozeh F., Mansouri S., 2019. Predictors of tuberculosis: Application of a logistic regression model. Gene Reports, 17, 100527. https://doi.org/10.1016/j.genrep.2019.100527.

Gnana D.A.A., Balamurugan S.A.A., Leavline E.J., 2016. Literature review on feature selection methods for high-dimensional data. International Journal of Computer Applications, 136(1), 9−17.

Hai H.D., Ngo H.T.T., Van P.T., Duc D.N., Avand M., Huu D.N., Amiri M., Van L.H., Prakash I., Thai P.B., 2022. Development and application of hybrid artificial intelligence models for groundwater potential mapping and assessment. Vietnam Journal of Earth Sciences, 410−429. https://doi.org/10.15625/2615-9783/17240.

He N., Yongqiao W., Tao J., Zhaoyu C., 2022. Self-Adaptive bagging approach to credit rating. Technological Forecasting and Social Change, 175, 121371. https://doi.org/10.1016/j.techfore.2021.121371.

Hong H., Chen W., Xu C., Youssef A.M., Pradhan B., Tien Bui D., 2017. Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto International, 32(2), 139−154. Doi:10.1080/10106049.2015.1130086.

Jablonski A., 2020. Improved algorithm for calculating high accuracy values of the Chandrasekhar function. Computer Physics Communications, 251, 107237. https://doi.org/10.1016/j.cpc.2020.107237.

Kareem M.I., Jasim M.N., 2022. DDOS attack detection using lightweight partial decision tree algorithm. In: 2022 International Conference on Computer Science and Software Engineering (CSASE). IEEE, 362−367.

Kavzoglu T., 2017. Object-oriented random forest for high resolution land cover mapping using quickbird-2 imagery. In: Handbook of neural computation. Elsevier, 607−619.

Lachenbruch P.A., 2014. McNemar test. Wiley StatsRef: Statistics Reference Online.

Lei S., Guo S., Sun X., Yu H., Xu F., Wan N., Wang Z., 2019. Capture and dissociation of dichloromethane on Fe, Ni, Pd and Pt decorated phosphorene. Applied Surface Science, 495, 143533. https://doi.org/10.1016/j.apsusc.2019.143533.

Lewandrowski K.-U., 2019. Retrospective analysis of accuracy and positive predictive value of preoperative lumbar MRI grading after successful outcome following outpatient endoscopic decompression for lumbar foraminal and lateral recess stenosis. Clinical Neurology

and Neurosurgery, 179, 74−80. https://doi.org/10.1016/j.clineuro.2019.02.019.

Luu C., Nguyen D.D., Amiri M., Van P.T., Bui Q.D., Prakash I., Pham B.T., 2022. Flood susceptibility modeling using Radial Basis Function Classifier and Fisher's linear discriminant function. Vietnam Journal of Earth Sciences, 44(1), 55−72. https://doi.org/10.15625/2615-9783/16626.

Luu C., Pham B.T., Tran V.P., Costache R., Nguyen H.D., Amiri M., Bui Q.D., Nguyen L.T., Le V.H., Prakash I., Phan T.T., 2021. GIS-Based Ensemble Computational models for Flood Susceptibility Prediction in the Quang Binh Province, Vietnam, 599, 126500. https://doi.org/10.1016/j.jhydrol.2021.126500.

Mehrabi M., 2021. Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy. Natural Hazards, 1−37.

Mehrabi M., Moayedi H., 2021. Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms. Environmental Earth Sciences, 80, 1−20.

Nguyen D.D., Nguyen H.P., Vu D.Q., Prakash I., Pham B.T., 2023. Using GA-ANFIS machine learning model for forecasting the load bearing capacity of driven piles. Journal of Science and Transport Technology, 3(2), 26−33.

Nhu V.-H., Mohammadi A., Shahabi H., Ahmad B.B., Al-Ansari N., Shirzadi A., Clague J.J., Jaafari A., Chen W., Nguyen H., 2020. Landslide

Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment. International Journal of Environmental Research and Public Health, 17(14), 4933. Doi:10.3390/ijerph17144933.

Nibbering D., Hastie T.J., 2022. Multiclass-penalized logistic regression. Computational Statistics & Data Analysis, 169, 107414. https://doi.org/10.1016/j.csda.2021.107414.

Nikmanesh S., Safaiee R., Sheikhi M.H., 2022. Enhanced methane-sensing performances of Pd (monomer or dimer) decorated or doped

γ-Graphyne: A DFT insight. Surfaces and Interfaces, 29, 101658. https://doi.org/10.1016/j.surfin.2021.101658.

Nohani E., Moharrami M., Sharafi S., Khosravi K., Pradhan B., Pham B.T., Lee S., M. Melesse A., 2019. Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models. Water, 11(7), 1402.

Peng R., Lu Z., 2021. Semiparametric Averaging of Nonlinear Marginal Logistic Regressions and Forecasting for Time Series Classification. Econometrics and Statistics, 31, 19−37. https://doi.org/10.1016/j.ecosta.2021.11.001.

Pham B.T., Van D.D., Acharya T.D., Van P.T., Costache R., Van L.H, Nguyen H.B.T., Prakash I., 2021a. Performance assessment of artificial neural network using chi-square and backward elimination feature selection methods for landslide susceptibility analysis. Environmental Earth Sciences, 80, 1−13.

Pham Q.B., Achour Y., Ali S.A., Parvin F., Vojtek M., Vojteková J., Al-Ansari N., Achu A., Costache R., Khedher K.M., 2021b. A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomatics, Natural Hazards and Risk, 12(1), 1741−1777.

Phong T.V., Phan T.T., Prakash I., Singh S.K., Shirzadi A., Chapi K., Ly H.-B., Ho L.S., Quoc N.K., Pham B.T., 2021. Landslide susceptibility modeling using different artificial intelligence methods: a case study at Muong Lay district, Vietnam. Geocarto International, 36(15), 1685−1708. Doi:10.1080/10106049.2019.1665715.

Prakash I., Nguyen D.D., Tuan N.T., Van P.T, Van H.L., 2024. Landslide susceptibility zoning: integrating multiple Intelligent models with SHAP Analysis. Journal of Science and Transport Technology, 23−41.

Prakash I., Pham B.T., 2023. Geotechnical Evaluation of Basalt Rocks: a review in the context of the construction of Civil Engineering structures. Journal of Science and Transport Technology, 10−24.

Prakash I., Pham B.T., 2024. Geotechnical Forensic Investigations of a Gravity Dam: Addressing Seepage and Sliding Problems in the Basalt Foundations of Karjan Dam, Gujarat, India. Journal of Science and Transport Technology, 24−38.

Reed P., Wu Y., 2013. Logistic regression for risk factor modelling in stuttering research. Journal of Fluency Disorders, 38(2), 88−101. https://doi.org/10.1016/j.jfludis.2012.09.003.

Sameen M.I., Sarkar R., Pradhan B., Drukpa D., Alamri A.M., Park H.-J., 2020. Landslide spatial modelling using unsupervised factor optimisation and regularised greedy forests. Computers & Geosciences, 134, 104336. https://doi.org/10.1016/j.cageo.2019.104336.

Schechter T., Teuffel O., Gibson P., Sung L., Seto W., Gassas A., Doyle J., Dupuis L.L., 2010. Cyclosporine Area Under The Curve (AUC) In Children Undergoing Haematopoietic Stem Cell Transplantation (HSCT): Limited Sampling Strategy (LSS). Biology of Blood and

Marrow Transplantation, 16(2), S258−S259. https://doi.org/10.1016/j.bbmt.2009.12.315.

Schlögel R., Marchesini I., Alvioli M., Reichenbach P., Rossi M., Malet J.P., 2018. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology, 301, 10−20. https://doi.org/10.1016/j.geomorph.2017.10.018.

Schubert A.-L., Hagemann D., Voss A., Bergmann K., 2017. Evaluating the model fit of diffusion models with the root mean square error of approximation. Journal of Mathematical Psychology, 77, 29−45. https://doi.org/10.1016/j.jmp.2016.08.004.

Shahabi H., Hashim M., 2015. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Scientific Reports, 5(1), 9899. Doi:10.1038/srep09899.

Šilhán K., 2021. Spatial dendrogeomorphic sampling based on the specific tree growth responses induced by the landslide mechanism. Quaternary Geochronology, 61, 101132. https://doi.org/10.1016/j.quageo.2020.101132.

Sopha H., Ghigo C., Ng S., Alijani M., Hromadko L., Michalicka J., Djenizian T., Macak J.M., 2022. TiO2 nanotube layers decorated by titania nanoparticles as anodes for Li-ion microbatteries. Materials Chemistry and Physics, 276, 125337. https://doi.org/10.1016/j.matchemphys.2021.125337.

Tien Bui D., Tuan T.A., Hoang N.-D., Thanh N.Q.C., Nguyen D.B., Liem N.V., Pradhan B., 2016. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides, 14, 447−458.

Van Q.V., Van T.N., Dang B.H., Thang V.T., 2025. Real-time Vehicle Behavior Classification using Single 3-Axis Magnetic Field Sensor and Neural Network. Journal of Science and Transport Technology, 98−111.

Vu D.Q., Nguyen D.D., Bui Q.-A.T., Trong D.K., Prakash I., Pham B.T., 2021. Estimation of California bearing ratio of soils using random forest based machine learning. Journal of Science and Transport Technology, 45−58.

Wang G., Chen X., Chen W., 2020. Spatial Prediction of Landslide Susceptibility Based on GIS and Discriminant Functions. ISPRS International Journal of Geo-Information, 9(3), 144.

Wu Z., Li N., Peng J., Cui H., Liu P., Li H., Li X., 2018. Using an ensemble machine learning methodology-Bagging to predict occupants' thermal comfort in buildings. Energy and Buildings, 173, 117−127. https://doi.org/10.1016/j.enbuild.2018.05.031.

Xu C., Xu X., Dai F., Xiao J., Tan X., Yuan R., 2012. Landslide hazard mapping using GIS and weight of evidence model in Qingshui River watershed of 2008 Wenchuan earthquake struck region. Journal of Earth Science, 23(1), 97−120. Doi:10.1007/s12583-012-0236-7.

Xuan B.T., Thuy D.L., Van P.T., Hong N.V., Van L.H., Nguyen D.D., Prakash I., Thanh T.P., Thai B.P., 2024. Groundwater potential zoning using Logistics Model Trees based novel ensemble machine learning model. Vietnam Journal of Earth Sciences, 46(2), 272−281.

Yang K., Tian F., Chen L., Li S., 2017a. Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches. International Review of Economics & Finance, 49, 276−291. https://doi.org/10.1016/j.iref.2017.01.030.

Yang W., Zheng Z., Zhang X., Tan B., Li L., 2017b. Analysis of landslide risk based on fuzzy extension analytic hierarchy process. Journal of Intelligent & Fuzzy Systems, 33, 2523−2531. Doi:10.3233/JIFS-17740.

Yin J., Tian L., 2014 Joint inference about sensitivity and specificity at the optimal cut-off point associated with Youden index. Computational Statistics & Data Analysis, 77, 1−13. https://doi.org/10.1016/j.csda.2014.01.021.

Yufeng S., Fengxiang J., 2009. Landslide Stability Analysis Based on Generalized Information Entropy. Paper presented at the Proceedings of the 2009 International Conference on Environmental Science and Information Application Technology, 2, 83−85. Doi: 10.1109/esiat.2009.258.

Zhuang J., Peng J., Iqbal J., Liu T., Liu N., Li Y., Ma P., 2015. Identification of landslide spatial distribution and susceptibility assessment in relation to topography in the Xi'an Region, Shaanxi Province, China. Frontiers of Earth Science, 9(3), 449−462. Doi:10.1007/s11707-014-0474-3.

Zia T., Akhter M.P., Abbas Q., 2015. Comparative study of feature selection approaches for Urdu text categorization. Malaysian Journal of Computer Science, 28(2), 93−109.

Downloads

Published

29-12-2025

How to Cite

Tran Van, P., Pham The, T., Nguyen Van, D., Nguyen Le, M., Nguyen Dang, M., Prakash, I., … Dam Nguyen, D. (2025). Landslide susceptibility mapping using Partial Decision Tree-Based hybrid artificial intelligence models. Vietnam Journal of Earth Sciences. https://doi.org/10.15625/2615-9783/24023

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

<< < 39 40 41 42 43 44 45 46 47 48 > >> 

You may also start an advanced similarity search for this article.