Machine learning approaches for satellite-derived bathymetry in tropical coastal waters: A comparative study from Nha Trang marine protected area, Vietnam

Nguyen Trinh Duc Hieu, Nguyen Hao Quang, Tri Nguyen-Quang, Tran Duc Dien, Vo Thi Ha, Nguyen Phuong Lien, Phuong Lan Nguyen, Nguyen Dang Huyen Tran, Gorin Sergey, Le Van Dan, Dang Ngoc Thi Giang, Ha Nam Thang
Author affiliations

Authors

  • Nguyen Trinh Duc Hieu Coastal Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center, Khanh Hoa, Vietnam
  • Nguyen Hao Quang 1-Laboratory of Environmental Sciences and Climate Change, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam; 2-Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
  • Tri Nguyen-Quang Biofluids and Biosystems Modelling Laboratory (BBML), Dalhousie University, DAC, Truro, NS B2N 5E3, Canada
  • Tran Duc Dien Coastal Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center, Khanh Hoa, Vietnam
  • Vo Thi Ha Coastal Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center, Khanh Hoa, Vietnam
  • Nguyen Phuong Lien Coastal Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center, Khanh Hoa, Vietnam
  • Phuong Lan Nguyen Faculty of Information Technology and Semiconductor, Thai Binh Duong University, Khanh Hoa, Vietmam
  • Nguyen Dang Huyen Tran Department of Academic Affairs, Thai Binh Duong University, Khanh Hoa, Vietnam
  • Gorin Sergey Lomonosov Moscow State University Marine Research Center, Moscow, Russia
  • Le Van Dan University of Agriculture and Forestry, Hue University, Hue City, Vietnam
  • Dang Ngoc Thi Giang University of Agriculture and Forestry, Hue University, Hue City, Vietnam
  • Ha Nam Thang University of Agriculture and Forestry, Hue University, Hue City, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/24020

Keywords:

PlanetScope, Nha Trang MPA, bathymetry, machine learning

Abstract

Bathymetry mapping plays a critical role in coastal zone management, marine conservation, and navigation safety. With the increasing availability of high-resolution satellite imagery, such as PlanetScope (3−5 m), remote sensing-based bathymetry retrieval offers a cost-effective and scalable alternative to traditional in-situ surveys. This study explores the capability of PlanetScope imagery to retrieve a wide range of bathymetry (-0.5 − ~ -40 m) in the southern area of the Nha Trang Marine Protected Area (MPA), Vietnam - an ecologically significant and dynamic coastal region. We conduct a comprehensive comparison between traditional approaches, including the Stumpf ratio model and Multiple Linear Regression (MLR), and a suite of advanced machine learning (ML) algorithms, including Random Forest (RF), Support Vector Machine (SVM), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGB), CatBoost (CB), and Gradient Boosting (GB). Among these, RF achieved the highest performance with an R2 of 0.85, RMSE of 2.66 m, and MAE of 1.85 m, significantly outperforming the Stumpf model (R2 = 0.29) and MLR (R2 = 0.57). This study represents one of the most extensive model comparisons to date for satellite-derived bathymetry using PlanetScope data, offering a benchmark for future applications in tropical coastal environments. Results underscore the potential of machine learning to advance spatially detailed and accurate bathymetric mapping from space.

Downloads

Download data is not yet available.

References

Ashphaq M., Srivastava P.K., Mitra D., 2021. Review of nearshore satellite derived bathymetry: Classification and account of five decades of coastal bathymetry research. Journal of Ocean Engineering and Science, 6(4), 340−359.

Ashphaq M., Srivastava P.K., Mitra D., 2024. Satellite‐derived bathymetry in dynamic coastal geomorphological environments through machine learning algorithms. Earth and Space Science, 11(7), e2024EA003554.

Belyadi H., Haghighat A., 2021. Machine learning guide for oil and gas using Python: A step-by-step breakdown with data, algorithms, codes, and applications. Gulf Professional Publishing.

Bertin S., Floc’h F., Le Dantec N., Jaud M., Cancouët R., Franzetti M., Cuq V., Prunier C., Ammann J., Augereau E., 2022. A long-term dataset of topography and nearshore bathymetry at the macrotidal pocket beach of Porsmilin, France. Scientific Data, 9(1), 79.

Breiman L., 2001. Random forests. Machine learning, 45(1), 5−32.

Britaev T.A., Tkachenko K.S., Nguyen T.H., 2017. Modern threats to the coral communities of Nha Trang Bay (Central Vietnam). Journal of Tropical Science and Technology(14), 3−15.

Caballero I., Stumpf R.P., 2023. Confronting turbidity, the major challenge for satellite-derived coastal bathymetry. Science of the Total Environment, 870, 161898.

Çelik O.İ., Büyüksalih G., Gazioğlu C., 2023. Improving the accuracy of satellite-derived bathymetry using multi-layer perceptron and random forest regression methods: A case study of Tavşan Island. Journal of Marine Science and Engineering, 11(11), 2090.

Chen T., Guestrin C., 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 785–794.

Chu S., Cheng L., Cheng J., Zhang X., Liu J., 2023. Comparison of six empirical methods for multispectral satellite-derived bathymetry. Marine Geodesy, 46(2), 149−174.

Downes J., Bruce D., Miot da Silva G., Hesp P.A., 2025. Optimising Satellite-Derived Bathymetry Using Optical Imagery over the Adelaide Metropolitan Coast. Remote Sensing, 17(5), 849.

Duan Z., Chu S., Cheng L., Ji C., Li M., Shen W., 2022. Satellite-derived bathymetry using Landsat-8 and Sentinel-2A images: assessment of atmospheric correction algorithms and depth derivation models in shallow waters. Optics Express, 30(3), 3238−3261.

Duc H.N., Tien G.N., Le Xuan H., Ngoc V.T., Huu D.N., 2024. Multi-step-ahead prediction of water levels using machine learning: A comparative analysis in the Vietnamese Mekong Delta. Vietnam Journal of Earth Sciences, 46(4), 468−488.

Eugenio F., Marcello J., Mederos-Barrera A., Marqués F., 2021. High-resolution satellite bathymetry mapping: Regression and machine learning-based approaches. IEEE Transactions on Geoscience and Remote Sensing, 60, 1−14.

Gabr B., Ahmed M., Marmoush Y., 2020. PlanetScope and Landsat 8 imageries for bathymetry mapping. Journal of Marine Science and Engineering, 8(2), 143.

Gholami R., Fakhari N., 2017. Support vector machine: principles, parameters, and applications. In Handbook of neural computation. Elsevier, 515−535.

Gülher E., Alganci U., 2023a. Satellite-derived bathymetry mapping on horseshoe island, Antarctic peninsula, with open-source satellite images: evaluation of atmospheric correction methods and empirical models. Remote Sensing, 15(10), 2568.

Gülher E., Alganci U., 2023b. Satellite-derived bathymetry in shallow waters: evaluation of gokturk-1 satellite and a novel approach. Remote Sensing, 15(21), 5220.

He J., Zhang S., Cui X., Feng W., 2024. Remote sensing for shallow bathymetry: A systematic review. Earth-Science Reviews, 258, 104957.

Hodúl M., Bird S., Knudby A., Chénier R., 2018. Satellite derived photogrammetric bathymetry. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 268−277.

Huu D.N., Cong T.V., Bretcan P., Petrisor A.-I., 2024. Assessing the relationship between landslide susceptibility and land cover change using machine learning. Vietnam Journal of Earth Sciences, 46(3), 339−359.

Jupp D.L.P., 1988. Background and extensions to depth of penetration (DOP) mapping in shallow coastal waters. Proceedings of the symposium on remote sensing of the coastal zone, Gold Coast, IV2(1)-IV2(19).

Kalybekova A., 2025. A Review of Advancements and Applications of Satellite-Derived Bathymetry. Engineered Science, 35, 1541.

Khakhim N., Kurniawan A., Wicaksono P., Hasrul A., 2024. Assessment of Empirical Nearshore Bathymetry Model Using New Emerged PlanetScope Instrument and Sentinel-2 Data in Coastal Shallow Waters. International Journal of Geoinformatics, 20(2), 95−105.

Kujawa P., Remondino F., 2025. A Review of Image-and LiDAR-Based Mapping of Shallow Water Scenarios. Remote Sensing, 17(12), 2086.

Kwon J.-Y., Shin H.-Y., Kim D.-H., Lee H.-G., Bouk J.-K., Kim J.-H., Kim T.-H., 2024. Estimation of shallow bathymetry using Sentinel-2 satellite data and random forest machine learning: a case study for Cheonsuman, Hallim, and Samcheok Coastal Seas. Journal of Applied Remote Sensing, 18(1), 014522−014522.

Li F., Zhang L., Chen B., Gao D., Cheng Y., Zhang X., Yang Y., Gao K., Huang Z., Peng J., 2018. A light gradient boosting machine for remaining useful life estimation of aircraft engines. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7, 3562–3567.

Li J., Knapp D.E., Schill S.R., Roelfsema C., Phinn S., Silman M., Mascaro J., Asner G.P., 2019. Adaptive bathymetry estimation for shallow coastal waters using Planet Dove satellites. Remote Sensing of Environment, 232, 111302.

Li Z., Peng Z., Zhang Z., Chu Y., Xu C., Yao S., García-Fernández Á.F., Zhu X., Yue Y., Levers A., 2023. Exploring modern bathymetry: A comprehensive review of data acquisition devices, model accuracy, and interpolation techniques for enhanced underwater mapping. Frontiers in Marine Science, 10, 1178845.

Liu Y., Wu S., Wu Z., Zhou S., 2024. Application of gradient boosting machine in satellite-derived bathymetry using Sentinel-2 data for accurate water depth estimation in coastal environments. Journal of Sea Research, 201, 102538.

Liu Z., Liu H., Ma Y., Ma X., Yang J., Jiang Y., Li S., 2024. Exploring the most effective information for satellite-derived bathymetry models in different water qualities. Remote Sensing, 16(13), 2371.

Lyzenga D.R., 1978. Passive remote sensing techniques for mapping water depth and bottom features. Applied optics, 17(3), 379−383.

Lyzenga D.R., Malinas N.P., Tanis F.J., 2006. Multispectral bathymetry using a simple physically based algorithm. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2251−2259.

Mobley C.D., Stramski D., Paul Bissett W., Boss E., 2004. Optical modeling of ocean waters: Is the case 1-case 2 classification still useful? Oceanography, 17(2), 60.

Moeinkhah A., Shakiba A., Azarakhsh Z., 2019. Assessment of regression and classification methods using remote sensing technology for detection of coastal depth (case study of Bushehr Port and Kharg Island). Journal of the Indian Society of Remote Sensing, 47(6), 1019−1029.

Nguyen H.Q., Banno M., Ha N.-T., 2025. Satellite derived bathymetry using empirical and machine learning approaches: a case study in the highly dynamic coastal water. Coastal Engineering Journal, 67(2), 232−251.

Nguyen Tac An, Le Dinh Mau, Pavlov D., 2007. Assessment of hydro-dynamical processes for ecosystem studies in Nha Trang bay, Vietnam. Collection of Reports of the National Conference "East Sea-2007", Nha Trang.

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., 2011. Scikit-learn: machine learning in Python. ournal of Machine Learning Research, 12.

Prokhorenkova L., Gusev G., Vorobev A., Dorogush A.V., Gulin A., 2018. CatBoost: unbiased boosting with categorical features. Advances in Neural Information Processing Systems, 31.

Quinten V., 2024. Acolite. Retrieved 15/4/2025 from https://github.com/acolite/acolite.

Saeidi V., Seydi S.T., Kalantar B., Ueda N., Tajfirooz B., Shabani F., 2023. Water depth estimation from Sentinel-2 imagery using advanced machine learning methods and explainable artificial intelligence. Geomatics, Natural Hazards and Risk, 14(1), 2225691.

Sesama A.S., Setiawan K.T., Julzarika A., 2020. Bathymetric Extraction Using Planetscope Imagery (Case Study: Kemujan Island, Central Java). International Journal of Remote Sensing and Earth Sciences (IJReSES), 17(2), 209−216.

Stumpf R.P., Holderied K., Sinclair M., 2003. Determination of water depth with high‐resolution satellite imagery over variable bottom types. Limnology and oceanography, 48(1-2), 547−556.

Tatsuyuki Sagawa, Masanao Sumiyoshi, Honami Watanabe, Yamashita Y., 2023. Bathymetry from PlanetScope imagery using random forest and deep learning 2023 Asian Conference on Remote Sensing (ACRS2023),

Tkachenko K., 2015. Ecological status of coral communities in the island area of the Nha Trang Bay (Vietnam). Russian Journal of Ecology, 46, 456−462.

Tkachenko K., 2023. Degradation of coral reefs under complex impact of natural and anthropogenic factors with Nha Trang Bay (Vietnam) as an example. Biology Bulletin Reviews, 13(5), 442−459.

Tran H.T.T., Nguyen Q.H., Pham T.H., Ngo G.T.H., Pham N.T.D., Pham T.G., Tran C.T.M., Ha T.N., 2024. Novel learning of bathymetry from landsat 9 imagery using machine learning, feature extraction and meta-heuristic optimization in a shallow Turbid Lagoon. Geosciences, 14(5), 130.

Wicaksono P., Harahap S.D., Hendriana R., 2024. Satellite-derived bathymetry from WorldView-2 based on linear and machine learning regression in the optically complex shallow water of the coral reef ecosystem of Kemujan island. Remote Sensing Applications: Society and Environment, 33, 101085.

Wu Z., Mao Z., Shen W., 2021. Integrating multiple datasets and machine learning algorithms for satellite-based bathymetry in seaports. Remote Sensing, 13(21), 4328.

Wulandari S., Wicaksono P., 2021. Bathymetry mapping using PlanetScope imagery on Kemujan Island, Karimunjawa, Indonesia. IOP Conference Series: Earth and Environmental Science, 686 012032.

Xie C., Chen P., Zhang Z., Pan D., 2023. Satellite-derived bathymetry combined with Sentinel-2 and ICESat-2 datasets using machine learning. Frontiers in Earth Science, 11, 1111817.

Ye L., Chu S., Chen H., Cheng J., Xu R., Qu Z., 2025. Hyperspectral Satellite-Derived Bathymetry Considering Substrate Characteristics. Marine Geodesy, 1−25.

Ye M., Yang C., Zhang X., Li S., Peng X., Li Y., Chen T., 2024. Shallow Water Bathymetry Inversion Based on Machine Learning Using ICESat-2 and Sentinel-2 Data. Remote Sensing, 16(23), 4603.

Zhang Y., Liu J., Shen W., 2022. A review of ensemble learning algorithms used in remote sensing applications. Applied Sciences, 12(17), 8654.

Downloads

Published

29-12-2025

How to Cite

Nguyen Trinh Duc, H., Nguyen Hao, Q., Tri Nguyen, Q., Tran Duc, D., Vo Thi, H., Nguyen Phuong, L., … Ha Nam, T. (2025). Machine learning approaches for satellite-derived bathymetry in tropical coastal waters: A comparative study from Nha Trang marine protected area, Vietnam. Vietnam Journal of Earth Sciences. https://doi.org/10.15625/2615-9783/24020

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.