Bias correction of CMIP6 rainfall projection for the Lake Toba region, Indonesia, using quantile delta mapping with monthly distribution fitting

Syukri Arif Rafhida, Sri Nurdiati, Retno Budiarti, Mohamad Khoirun Najib
Author affiliations

Authors

  • Syukri Arif Rafhida School of Data Science, Mathematics, and Informatics, IPB University, Bogor, Indonesia
  • Sri Nurdiati School of Data Science, Mathematics, and Informatics, IPB University, Bogor, Indonesia
  • Retno Budiarti School of Data Science, Mathematics, and Informatics, IPB University, Bogor, Indonesia
  • Mohamad Khoirun Najib School of Data Science, Mathematics, and Informatics, IPB University, Bogor, Indonesia

DOI:

https://doi.org/10.15625/2615-9783/23833

Keywords:

Bias correction, CMIP6, equatorial climate, Lake Toba, Quantile Delta Mapping, rainfall

Abstract

Accurate climate projections are crucial for water resource management in the Lake Toba region of Indonesia, where rainfall supports agriculture, tourism, and hydropower. However, rainfall projections from CMIP6 global climate models (GCMs) often exhibit systematic biases due to coarse spatial resolution and model assumptions. This study applies the statistical bias-correction method, Quantile Delta Mapping (QDM), to adjust CMIP6 rainfall outputs using observed data from seven weather stations around Lake Toba. The study employs ten probability distributions and compares two distribution identification approaches: monthly and full-period. Results show that monthly distribution identification (QDM1) improves model performance more consistently, reducing the Kolmogorov-Smirnov (KS) error by the raw CMIP6 data by 47.26% compared to 20.39% from the full-period approach (QDM2). Post-correction projections using a Multi-Model Ensemble Mean (MMEM) for 2015–2050 under scenarios SSP2-4.5 and SSP5-8.5 indicate moderated rainfall trends in 2050 after correction, notably reduced overestimation in wet seasons. These more conservative projections suggest slight decreases during MAM, contrasting with the uncorrected CMIP6 tendency toward wetter futures. It also suggests the future use of regional climate models (RCMs) and nonparametric or machine-learning methods to capture more complex rainfall distribution patterns in the region.

Downloads

Download data is not yet available.

References

Ahn J.B., Jo S., Suh M.S., Cha D.H., Lee D.K., Hong S.Y., Min S.K., Park S.C., Kang H.S., Shim K.M., 2016. Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pacific J. Atmos. Sci., 52, 223–236. https://doi.org/10.1007/s13143-016-0021-0.

Aldrian E., Susanto D.R., 2003. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol., 23, 1435–1452. https://doi.org/10.1002/joc.950.

Cannon A.J., 2018. Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn., 50, 31–49. https://doi.org/10.1007/s00382-017-3580-6.

Cannon A.J., Sobie S.R., Murdock T.Q., 2015. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim., 28, 6938–6959. https://doi.org/10.1175/JCLI-D-14-00754.1

Chen J., Brissette F.P., Chaumont D., Braun M., 2013. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. J. Hydrol., 479, 200–214. https://doi.org/10.1016/j.jhydrol.2012.11.062.

Chesner C.A., 2012. The Toba Caldera Complex. Quat. Int., 258, 5–18. https://doi.org/10.1016/j.quaint.2011.09.025.

Döscher R., Acosta M., Alessandri A., Anthoni P., Arsouze T., Bergman T., Bernardello R., Boussetta S., Caron L.P., Carver G., Castrillo M., Catalano F., Cvijanovic I., Davini P., Dekker E., Doblas-Reyes F.J., Docquier D., Echevarria P., Fladrich U., Fuentes-Franco R., Gröger M., Hardenberg J.V., Hieronymus J., Karami M.P., Keskinen J.P., Koenigk T., Makkonen R., Massonnet F., Ménégoz M., Miller P.A., Moreno-Chamarro E., Nieradzik L., Van Noije T., Nolan P., O’donnell D., Ollinaho P., Van Den Oord G., Ortega P., Prims O.T., Ramos A., Reerink T., Rousset C., Ruprich-Robert Y., Le Sager P., Schmith T., Schrödner R., Serva F., Sicardi V., Sloth Madsen M., Smith B., Tian T., Tourigny E., Uotila P., Vancoppenolle M., Wang S., Wårlind D., Willén U., Wyser K., Yang S., Yepes-Arbós X., Zhang Q., 2022. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev., 15, 2973–3020. https://doi.org/10.5194/gmd-15-2973-2022.

Eyring V., Bony S., Meehl G.A., Senior C.A., Stevens B., Stouffer R.J., Taylor K.E., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016.

Grose M.R., Narsey S., Delage F.P., Dowdy A.J., Bador M., Boschat G., Chung C., Kajtar J.B., Rauniyar S., Freund M.B., Lyu K., Rashid H., Zhang X., Wales S., Trenham C., Holbrook N.J., Cowan T., Alexander L., Arblaster J.M., Power S., 2020. Insights From CMIP6 for Australia's Future Climate. Earth's Futur., 8, e2019EF001469. https://doi.org/10.1029/2019EF001469.

Gumus B., Oruc S., Yucel I., Yilmaz M.T., 2023. Impacts of Climate Change on Extreme Climate Indices in Türkiye Driven by High-Resolution Downscaled CMIP6 Climate Models. Sustain., 15. https://doi.org/10.3390/su15097202.

Hermawan, E., 2010. Pengelompokkan Pola Curah Hujan Yang Terjadi Di Beberapa Kawasan P. Sumatera Berbasis Hasil Analisis Teknik Spektral. J. Meteorol. dan Geofis. 11. https://doi.org/10.31172/jmg.v11i2.67.

Hidayat R., Taufik M., 2025. Bias Correction of CMIP6 Models for Assessment of Wet and Dry Conditions Over Sumatra. Agromet, 39, 33–39. https://doi.org/10.29244/j.agromet.39.1.33-39.

Ho C.K., Stephenson D.B., Collins M., Ferro C.A.T., Brown S.J., 2012. Calibration strategies a source of additional uncertainty in climate change projections. Bull. Am. Meteorol. Soc., 93, 21–26. https://doi.org/10.1175/2011BAMS3110.1.

Hofstra N., New M., McSweeney C., 2010. The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Clim. Dyn., 35, 841–858. https://doi.org/10.1007/s00382-009-0698-1.

Irwandi H., Ariantono J.Y., Kartika Q.A., Siregar A.C.P., Tari C.A., Sudrajat A., 2017. Pengaruh Iklim Terhadap Penurunan Tinggi Muka Air Danau Toba, in: Seminar Nasional Sains Atmosfer, 105–110.

Irwandi H., Rosid M.S., Mart T., 2023. Effects of Climate change on temperature and precipitation in the Lake Toba region, Indonesia, based on ERA5-land data with quantile mapping bias correction. Sci. Rep., 13, 1–11. https://doi.org/10.1038/s41598-023-29592-y.

Karmalkar A.V., Thibeault J.M., Bryan A.M., Seth A., 2019. Identifying credible and diverse GCMs for regional climate change studies case study: Northeastern United States. Clim. Change, 154, 367–386. https://doi.org/10.1007/s10584-019-02411-y.

Le X.-H., Koyama N., Kikuchi K., Yamanouchi Y., Fukaya A., Yamada T., 2025. Evaluating Geostatistical and Statistical Merging Methods for Radar-Gauge Rainfall Integration: A Multi-Method Comparative Study. Remote Sens., 17. https://doi.org/10.3390/rs17152622.

Li H., Sheffield J., Wood E.F., 2010. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmos., 115. https://doi.org/10.1029/2009JD012882.

Li X., Li Z., 2023. Evaluation of bias correction techniques for generating high-resolution daily temperature projections from CMIP6 models. Clim. Dyn., 61, 3893–3910. https://doi.org/10.1007/s00382-023-06778-8.

Lukman R., 2010. Kajian Kondisi Morfometri Dan Beberapa Parameter Stratifikasi Perairan Danau Toba. J. Limnotek, 17, 158–170.

Mamenun M., Pawitan H., Sopaheluwakan A., 2014. Validasi Dan Koreksi Data Satelit Trmm Pada Tiga Pola Hujan Di Indonesia. J. Meteorol. dan Geofis., 15. https://doi.org/10.31172/jmg.v15i1.169.

Mareta L., Agiel H.M., Hadiningrum T., 2024. Historical and projected rainfall climatology in Sumatra based on the CMIP6. IOP Conf. Ser. Earth Environ. Sci., 1359, 12089. https://doi.org/10.1088/1755-1315/1359/1/012089.

Najib M.K., Nurdiati S., 2021. Koreksi Bias Statistik Pada Data Prediksi Suhu Permukaan Air Laut Di Wilayah Indian Ocean Dipole Barat Dan Timur. Jambura Geosci. Rev., 3, 9–17. https://doi.org/10.34312/jgeosrev.v3i1.8259.

Ngai S.T., Tangang F., Juneng L., 2017. Bias correction of global and regional simulated daily precipitation and surface mean temperature over Southeast Asia using quantile mapping method. Glob. Planet. Change, 149, 79–90. https://doi.org/https://doi.org/10.1016/j.gloplacha.2016.12.009.

Noël T., Loukos H., Defrance D., Vrac M., Levavasseur G., 2021. A high-resolution downscaled CMIP5 projections dataset of essential surface climate variables over the globe coherent with the ERA5 reanalysis for climate change impact assessments. Data Br., 35, 106900. https://doi.org/10.1016/j.dib.2021.106900.

Nurdiati S., Bukhari F., Sopaheluwakan A., Septiawan P., Hutapea V., 2024. ENSO and IOD impact analysis of extreme climate condition in Papua, Indonesia, 19, 1–18. https://doi.org/10.21163/gt_2024.191.01.

Nurdiati S., Khatizah E., Najib M.K., Hidayah R.R., 2021. Analysis of rainfall patterns in Kalimantan using fast fourier transform (FFT) and empirical orthogonal function (EOF). J. Phys. Conf. Ser., 1796, 12053. https://doi.org/10.1088/1742-6596/1796/1/012053.

Nurdiati S., Sopaheluwakan A., Najib M.K., 2019. Statistical Bias Correction for Predictions of Indian Ocean Dipole Index With Quantile Mapping Approach. Int. MIPAnet Conf. Sci. Math. https://doi.org/10.31219/osf.io/7dq2j.

Nurdiati S., Sopaheluwakan A., Septiawan P., 2022. Joint Distribution Analysis of Forest Fires and Precipitation in Response to ENSO, IOD, and MJO (Study Case: Sumatra, Indonesia). Atmosphere (Basel), 13. https://doi.org/10.3390/atmos13040537.

Ona B.J., Raghavan S.V., Nguyen N.S., Ngai S.T., Nguyen T.H., 2024. Changes in Future Rainfall over Southeast Asia Using the CMIP6 Multi-model Ensemble. J. Atmos. Sci. Res., 7, 62–82. https://doi.org/10.30564/jasr.v7i2.6335.

Prasetyo B., Irwandi H., Pusparini N., 2018. Karakteristik Curah Hujan Berdasarkan Ragam Topografi Di Sumatera Utara. J. Sains Teknol. Modif. Cuaca, 19, 11. https://doi.org/10.29122/jstmc.v19i1.2787.

Rafhida S.A., Nurdiati S., Budiarti R., Najib M.K., 2024. Bias correction of lake Toba rainfall data using quantile delta mapping. Cauchy, 9, 297–309. https://doi.org/10.18860/ca.v9i2.29124.

Reboita M.S., Ferreira G.W. de S., Ribeiro J.G.M., da Rocha R.P., Rao V.B., 2023. South American Monsoon Lifecycle Projected by Statistical Downscaling with CMIP6-GCMs. Atmosphere (Basel)., 14, 1380. https://doi.org/10.3390/atmos14091380.

Riahi K., van Vuuren D.P., Kriegler E., Edmonds J., O’Neill B.C., Fujimori S., Bauer N., Calvin K., Dellink R., Fricko O., Lutz W., Popp A., Cuaresma J.C., K.C.S., Leimbach M., Jiang L., Kram T., Rao S., Emmerling J., Ebi K., Hasegawa T., Havlik P., Humpenöder F., Da Silva L.A., Smith S., Stehfest E., Bosetti V., Eom J., Gernaat D., Masui T., Rogelj J., Strefler J., Drouet L., Krey V., Luderer G., Harmsen M., Takahashi K., Baumstark L., Doelman J.C., Kainuma M., Klimont Z., Marangoni G., Lotze-Campen H., Obersteiner M., Tabeau A., Tavoni M., 2017. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang., 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009.

Salathé E.P., 2003. Comparison of various precipitation downscaling methods for the simulation of streamflow in a rain-shadow river basin. Int. J. Climatol., 23, 887–901. https://doi.org/10.1002/joc.922.

Schoof J.T., 2015. High-resolution projections of 21st century daily precipitation for the contiguous U.S. J. Geophys. Res., 120, 3029–3042. https://doi.org/10.1002/2014JD022376.

Schoof J.T., Robeson S.M., 2016. Projecting changes in regional temperature and precipitation extremes in the United States. Weather Clim. Extrem., 11, 28–40. https://doi.org/10.1016/j.wace.2015.09.004.

Schroeter S., Bi D., Law R.M., Loughran T.F., Rashid H.A., Wang Z., 2024. Global-scale future climate projections from ACCESS model contributions to CMIP6. J. South. Hemisph. Earth Syst. Sci., 74. https://doi.org/doi.org/10.1071/ES23029.

Sihotang H., Purwanto M.Y.J., Widiatmaka W., Basuni S., 2012. Model for Water Conservation of Lake Toba. J. Nat. Resour. Environ. Manag., 2, 65–72. https://doi.org/10.19081/jpsl.2012.2.2.65.

Supharatid S., Nafung J., Aribarg T., 2022. Projected changes in temperature and precipitation over mainland Southeast Asia by CMIP6 models. J. Water Clim. Chang, 13, 337–356. https://doi.org/10.2166/wcc.2021.015.

Teutschbein C., Seibert J., 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456–457, 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052.

Tukidi, 2010. Karakter Curah Hujan Di Indonesia. J. Geogr., 7, 136–145.

Voldoire, A., 2018. CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 CMIP. https://doi.org/10.22033/ESGF/CMIP6.1375,

Wild J., Hall J.K., 1982. Aspects of hydrology in the province of North Sumatra, Indonesia. Proc. Inst. Civ. Eng., 73, 85–108. https://doi.org/10.1680/iicep.1982.1873.

Wu T., Chu M., Dong M., Fang Y., Jie W., Li J., Li W., Liu Q., Shi X., Xin X., Yan J., Zhang F., Zhang J., Zhang L., Zhang Y., 2018. BCC BCC-CSM2MR model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.2948.

Xia P., Tahara T., Kakue T., Awatsuji Y., Nishio K., Ura S., Kubota T., Matoba O., 2013. Performance comparison of bilinear interpolation, bicubic interpolation, and B-spline interpolation in parallel phase-shifting digital holography. Opt. Rev., https://doi.org/10.1007/s10043-013-0033-2.

Yukimoto S., Koshiro T., Kawai H., Oshima N., Yoshida K., Urakawa S., Tsujino H., Deushi M., Tanaka T., Hosaka M., Yoshimura H., Shindo E., Mizuta R., Ishii M., Obata A., Adachi Y., 2019. MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical. Earth Syst. Grid Fed.

Downloads

Published

25-11-2025

How to Cite

Arif Rafhida, S., Nurdiati, S., Budiarti, R., & Khoirun Najib, M. (2025). Bias correction of CMIP6 rainfall projection for the Lake Toba region, Indonesia, using quantile delta mapping with monthly distribution fitting. Vietnam Journal of Earth Sciences. https://doi.org/10.15625/2615-9783/23833

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.