Assessing WRF-Modeled vertical profiles during MRG wave events on the southern coast of West Java: impact of vertical resolution, domain configuration, and input data

Didi Satiadi, Trismidianto, Anis Purwaningsih, Wendi Harjupa, Ibnu Fathrio, Dita F. Andarini, Risyanto, Teguh Harjana, Alfan S. Praja, Noersomadi, Fadli Nauval, Elfira Saufina, Ina Juaeni, Adi Witono, Aisya Nafiisyanti, Eddy Hermawan, Robi Muharsyah, Danang E. Nuryanto, Putri Wulandari, Muhaji S. Putri
Author affiliations

Authors

  • Didi Satiadi National Research and Innovation Agency, Bandung 40135, Indonesia
  • Trismidianto National Research and Innovation Agency, Bandung 40135, Indonesia
  • Anis Purwaningsih National Research and Innovation Agency, Bandung 40135, Indonesia
  • Wendi Harjupa 1-National Research and Innovation Agency, Bandung 40135, Indonesia; 2-School of Electrical Engineering, Telkom University, Bandung, Indonesia; 3-Disaster Prevention Research Institute (DPRI), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
  • Ibnu Fathrio National Research and Innovation Agency, Bandung 40135, Indonesia
  • Dita F. Andarini National Research and Innovation Agency, Bandung 40135, Indonesia
  • Risyanto National Research and Innovation Agency, Bandung 40135, Indonesia
  • Teguh Harjana National Research and Innovation Agency, Bandung 40135, Indonesia
  • Alfan S. Praja National Research and Innovation Agency, Bandung 40135, Indonesia
  • Noersomadi National Research and Innovation Agency, Bandung 40135, Indonesia
  • Fadli Nauval National Research and Innovation Agency, Bandung 40135, Indonesia
  • Elfira Saufina National Research and Innovation Agency, Bandung 40135, Indonesia
  • Ina Juaeni National Research and Innovation Agency, Bandung 40135, Indonesia
  • Adi Witono National Research and Innovation Agency, Bandung 40135, Indonesia
  • Aisya Nafiisyanti National Research and Innovation Agency, Bandung 40135, Indonesia
  • Eddy Hermawan National Research and Innovation Agency, Bandung 40135, Indonesia
  • Robi Muharsyah The Agency for Meteorology, Climatology and Geophysics, Jakarta, Indonesia
  • Danang E. Nuryanto The Agency for Meteorology, Climatology and Geophysics, Jakarta, Indonesia
  • Putri Wulandari Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Bandung, Indonesia
  • Muhaji S. Putri Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Bandung, Indonesia

DOI:

https://doi.org/10.15625/2615-9783/23783

Keywords:

WRF, model assessment, MRG, radiosonde, West Java

Abstract

Mixed Rossby-gravity (MRG) waves are key equatorial disturbances that modulate convection and rainfall across the Maritime Continent, yet their representation in regional models remains underexplored. Accurate simulation of MRG waves induced vertical structure is critical for improving forecasts of tropical weather variability and associated hydrometeorological hazards. This study evaluates the Weather Research and Forecasting (WRF) model's ability to simulate vertical atmospheric profiles during an MRG wave event on the southern coast of West Java from 26 to 29 September 2022, using radiosonde observations at 06, 12, and 18 local time (LT). Eleven model configurations were evaluated, differing in domain schemes (two vs. three nesting steps), vertical resolution (33, 45, 60, 80, and 100 levels), and input data sources (Real-Time Global Forecast System [GFS] vs. Final Operational Global Analysis [FNL]). All model configurations used in the simulation have a fixed physics scheme parameterization. The simulations were compared with radiosonde observations and evaluated statistically using the correlation coefficient (R) and Normalized Mean Absolute Error (NMAE). The analysis demonstrates that the WRF model effectively captures MRG wave dynamics by simulating key atmospheric variables, including pressure (P), temperature (T), relative humidity (RH), zonal (U) and meridional (V) wind anomalies in strong agreement with observations. P is well represented, exhibiting the highest R (0.81), whereas RH is the lowest (0.21), likely reflecting the model's inability to capture fine‑scale observed moisture variations. Configurations that utilized a two-step nesting domain and the FNL input demonstrated the best performance, achieving higher R values and lower NMAE. Input data had a notable impact on model performance: the FNL analysis improved R by ~36% and reduced NMAE by ~12% compared to GFS, likely due to FNL's assimilation of observational data, which reduces uncertainty. Moreover, a domain scheme with a smaller outer domain and fewer nesting steps also improved R by ~36% and reduced NMAE by ~12%, suggesting that simpler domain configurations help limit error propagation. Additionally, increasing the vertical resolution from 33 to 100 levels enhanced the simulation of MRG wave structures, improving R by ~45% and reducing NMAE by ~22%. These findings enhance the understanding of MRG wave dynamics and offer valuable insights for improving regional weather forecasting.

Downloads

Download data is not yet available.

References

Aiyyer A.R., Molinari J., 2003. Evolution of mixed Rossby-gravity waves in idealized MJO environments. J. Atmos. Sci., 60, 2837–2855. Doi: 10.1175/1520- 0469(2003)060%3C2837:EOMRWI%3E2.0.CO;2.

Andrews D.G., Holton J.R., Leovy C.B., 1987. Middle Atmosphere Dynamics, Elsevier, New York.

Argüeso D., Romero R., Homar V., 2020. Precipitation features of the maritime continent in parameterized and explicit convection models. J. Clim., 33, 2449–2466. Doi: 10.1175/JCLI-D-19-0416.1.

Barker D., Huang X.Y., Liu Z., Auligné T., Zhang X., Rugg S., Ajjaji R., Bourgeois A., Bray J., Chen Y., Demirtas M., Guo Y.R., Henderson T., Huang W., Lin H.C., Michalakes J., Rizvi S., Zhang X., 2012. The weather research and forecasting model's community variational/ensemble data assimilation system: WRFDA. Bulletin of the American Meteorological Society, 93(6), 831–843.

Bengtsson L., Dias J., Gehne M., Bechtold P., Whitaker J., Bao J.W., Magnusson L., Michelson S., Pegion P., Tulich S., Kiladis G.N., 2019. Convectively coupled equatorial wave simulations using the ECMWF IFS and the NOAA GFS cumulus convection schemes in the NOAA GFS model. Mon. Weather. Rev., 147, 4005–4025. Doi: 10.1175/MWR-D-19-0195.1.

Birner T., Dörnbrack A., Schumann U., 2002. How sharp is the tropopause at midlatitudes? Geophysical Research Letters, 33(14). Doi: 10.1029/2002GL015142.

Chang C.-P., Harr P.A., Mcbride J., Hsu H.-H., 2004. Maritime continent monsoon: annual cycle and boreal winter variability. in: East Asian Monsoon, 107–150. Doi: 10.1142/9789812701411_0003.

Coniglio M.C., Correia J., Marsh P.T., Kong F., 2013. Verification of convection- allowing WRF model forecasts of the planetary boundary layer using sounding observations. Weather and Forecasting, 28(4), 842–862. Doi: 10.1175/WAF-D-12-00103.1.

Dias J., Gehne M., Kiladis G.N., Magnusson L., 2023. The role of convectively coupled equatorial waves in sub‐seasonal predictions. Geophysical Research Letters, 50(21), e2023GL106198. Doi: 10.1029/2023GL106198.

Fathullah N.Z., Lubis S.W., Setiawan S., 2017. Characteristics of Kelvin waves and mixed Rossby-gravity waves in opposite QBO phases. IOP Conf. Ser. Earth Environ. Sci., 54. Doi: 10.1088/1755-1315/54/1/012032.

Feng Z., Leung L.R., Houze R.A.Jr., Hagos S., Hardin J., Yang Q., Han B., Fan J., 2018. Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. Journal of Advances in Modeling Earth Systems, 10(7), 1470–1494. Doi: 10.1029/2018MS001305.

Fonseca R.M., Zhang T., Yong K.T., 2015. Improved simulation of precipitation in the tropics using a modified BMJ scheme in the WRF model. Geosci. Model Dev., 8, 2915–1928. Doi: 10.5194/gmd-8-2915-2015.

Fritsch F.N., Carlson R.E., 1980. Monotone piecewise cubic interpolation. SIAM Journal on Numerical Analysis, 17(2), 238–246. Doi: 10.1137/0717021.

Geng B., Katsumata M., Taniguchi K., 2020. Modulation of the diurnal cycle of precipitation near the southwestern coast of Sumatra by mixed Rossby-gravity waves. J. Meteorol. Soc. Japan. Ser. II., 9. Doi: 10.2151/jmsj.2020-026.

Giannaros C., Melas D., Giannaros T.M., 2019. On the short-term simulation of heat waves in the Southeast Mediterranean: Sensitivity of the WRF model to various physics schemes. Atmospheric research, 218, 99–116. Doi: 10.1016/j.atmosres.2018.11.015.

Hernández K.S., Gómez-Ríos S., Henao J.J., Robledo V., Ramírez-Cardona A., Rendón A.M., 2024. Rainfall Sensitivity to Microphysics and Planetary Boundary Layer Parameterizations in Convection-Permitting Simulations over Northwestern South America. Journal of Meteorological Research, 38(4), 805– 825. Doi: 10.1007/s13351-024-3156-4.

Holton J.R., Hakim G.J., 2012. An introduction to dynamic meteorology: Fifth edition.

Hong S.Y., Lim J.O.J., 2006. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42(2), 129–151.

Im E.-S., Eltahir E.A.B., 2018. Simulation of the diurnal variation of rainfall over the western maritime continent using a regional climate model. Clim. Dyn., 51, 73–88. Doi: 10.1007/s00382-017-3907-3.

Jee J.-B., Kim S., 2017. Sensitivity study on high-resolution WRF precipitation forecast for a heavy rainfall event. Atmosphere (Basel), 8. Doi: 10.3390/atmos8060096.

Kiladis G.N., Dias J., Gehne M., 2016. The relationship between equatorial mixed Rossby–gravity and eastward inertio-gravity waves. Part I. J. Atmos. Sci., 73, 2123–2145. Doi: 10.1175/JAS-D-15-0230.1

Kiladis G.N., Wheeler M.C., Haertel P.T., Straub K.H., Roundy P.E., 2009. Convectively coupled equatorial waves. Rev. Geophys., 47. Doi: 10.1029/2008RG000266.

Koh T.Y., Wang S., Bhatt B.C., 2012. A diagnostic suite to assess NWP performance. Journal of Geophysical Research: Atmospheres, 117(D13). Doi: 10.1029/2011JD017103.

Lanzate J.R., Free M., 2008. Comparison of Radiosonde and GCM Vertical Temperature Trend Profiles: Effects of Dataset Choice and Data Homogenization. J. of Clim, 21, 5417–5435.

Lee H.-T., 2011. NOAA Climate Data Record (CDR). In: Of Daily Outgoing Longwave.

Liebmann B., Hendon H.H., 1990. Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 1463–1479. Doi: 10.1175/1520- 0469(1990)047<1463:SSDNTE>2.0.CO;2.

Luers J.K., 1997. Temperature error of the Vaisala RS90 radiosonde. J. Atmos. Oceanic Technol., 14(6), 1520–1532. Doi: 10.1175/1520- 0426(1997)014<1520:TEOTVR>2.0.CO;2.

Magana V., Yanai M., 1995. Mixed Rossby-gravity waves triggered by lateral forcing. Journal of Atmospheric Sciences, 52(9), 1473–1486. Doi: 10.1175/1520- 0469(1995)052<1473:MRWTBL>2.0.CO;2.

Mapes B.E., 2000. Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. Journal of the Atmospheric Sciences, 57(10), 1515–1535. Doi: 10.1175/1520- 0469(2000)057<1515:CISSTE>2.0.CO;2.

Marlyono S.G., Nandi N., 2018. The preparedness level of community in facing disaster in West Java Province. IOP Conf. Ser. Earth Environ. Sci., 145. Doi: 10.1088/1755-1315/145/1/012103.

Matsuno T., 1966. Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Japan. Ser. II., 44, 25–43. Doi: 10.2151/jmsj1965.44.1_25.

Mcbride J., 1998. Indonesia, Papua New Guinea, and tropical Australia: the southern hemisphere monsoon. Meteorol. Monogr, 89–99. Doi: 10.1007/978-1-935704- 10-2_3.

Minnis P., Yi Y., Huang J., Ayers K., 2005. Relationships between radiosonde and RUC-2 meteorological conditions and cloud occurrence determined from ARM data. J. of Geophy. Res., 110, D23. Doi: 10.1029/2005JD006005.

Nash J., Oakley T., Vömel H., Wei L., 2010. WMO intercomparison of high quality radiosonde systems. Tech. Rep., World Meteorological Organization, Yangjiang, China.

Neale R., Slingo J., 2003. The maritime continent and its role in the global climate: A GCM study. J. Clim., 16, 834–848. Doi: 10.1175/1520- 0442(2003)016<0834:TMCAIR>2.0.CO;2.

Prihanto I.G., et al., 2023. Study on satellite disaster early warning system (SADEWA) acceptance with technology acceptance model. AIP Conference Proceedings, AIP Publishing, 2941, 1. Doi: 10.1063/5.0181481.

Qian J.-H., Robertson A.W., Moron V., 2010. Interactions among ENSO, the monsoon, and diurnal cycle in rainfall variability over Java, Indonesia. J. Atmos.Sci., 67, 3509–3524. Doi: 10.1175/2010JAS3348.1.

Radiation (OLR), Version 1.2. NOAA National Climatic Data Center. Doi: 10.7289/V5SJ1HH2.

Ramage C.S., 1968. Role of a "tropical maritime continent" in the atmospheric circulation. Mon. Weather. Rev., 96, 365–370. Doi: 10.1175/1520- 0493(1968)096%3C0365:ROATMC%3E2.0.CO;2.

Ramos-Valle A.N., Prein A.F., Ge M., Wang D., Giangrande S.E., 2023. Grid spacing sensitivities of simulated mid-latitude and tropical mesoscale convective systems in the convective gray zone. Journal of Geophysical Research: Atmospheres, 128, e2022JD037043. Doi: 10.1029/2022JD037043.

Roundy P.E., Frank W.M., 2004. A climatology of waves in the equatorial region. Journal of the Atmospheric Sciences, 61(17), 2105–2132. Doi: 10.1175/1520- 0469(2004)061<2105:ACOWIT>2.0.CO;2.

Satiadi D., Trismidianto, Purwaningsih A., Andarini D.F., Risyanto, Harjana T., Fathrio I., Praja A.S., Noersomadi, Nauval F., Saufina E., Juaeni I., Witono A., Nafiisyanti A., Harjupa W., Hermawan E., Muharsyah R.Y., Nuryanto D.E., 2024. Characteristics of atmospheric variables over the southern coast of West Java in the presence of Australian Monsoon and MRG waves. Kuwait. J. Sci., 51. Doi: 10.1016/j.kjs.2023.10.018.

Schreck C.J.III, Molinari J., Mohr K.I., 2011. Attributing tropical cyclogenesis to equatorial waves in the western North Pacific. Journal of the Atmospheric Sciences, 68(2), 195–209. Doi: 10.1175/2010JAS3396.1.

Sivaprasad P., et al., 2020. Simulation of the atmospheric parameters during passage of a tropical storm over the South China Sea (East Sea): a comparison with MetOcean buoy and ERA-Interim data. Meteorol. Appl., 27, e1895. Doi: 10.1002/met.1895.

Skamarock W.C., et al., 2021. A description of the advanced research WRF model version 4.3. Doi: 10.5065/1dfh-6p97.

Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X-Y., Wang W., Powers J.G., 2008: A description of the advanced research WRF version 3, NCAR Technical Note NCAR/TN–475+STR. National Center for Atmospheric Research.

Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Wang W., Powers J.G., 2019. A Description of the Advanced Research WRF Model Version 4. NCAR Technical Note.

Straub K.H., Kiladis G.N., 2003. Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Monthly Weather Review, 131(5), 945–960. Doi: 10.1175/1520- 0493(2003)131<0945:IBTBSI>2.0.CO;2.

Straub K.H., Kiladis G.N., 2003. The observed structure of convectively coupled Kelvin waves: comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 655–1668. Doi: 10.1175/1520- 0469(2003)060<1655:TOSOCC>2.0.CO;2.

Takasuka D., Satoh M., Yokoi S., 2019. Observational evidence of mixed Rossby- gravity waves as a driving force for the MJO convective initiation and propagation. Geophys. Res. Lett., 46, 5546–5555. Doi: 10.1029/2019GL083108.

Takayabu Y., 1994. Large-scale cloud disturbances associated with equatorial waves. J. Meteorol. Soc. Japan. Ser. II., 72, 433–449. Doi: 10.2151/jmsj1965.72.3_433.

Talbot C., Bou-Zeid E., Smith J., 2012. Nested mesoscale large-eddy simulations with WRF: performance in real test cases. J. Hydrometeorol., 13, 1421–1441. Doi: 10.1175/JHM-D-11-048.1.

Vömel H., Selkirk H., Miloshevich L., Valverde-Canossa J., Valdés J., Kyrö E., Kivi R., Stolz W., Peng G., J.A.Diaz, 2007. Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Oceanic Technol., 24, 953–963. Doi: 10.1175/JTECH2019.1.

Wallace J.M., 1971. Spectral studies of tropospheric wave disturbances in the tropical western Pacific. Rev. Geophys., 9, 557–612. Doi: 10.1029/RG009i003p00557.

Wallace J.M., 1973. General circulation of the tropical lower stratosphere. Rev. Geophys., 11, 191–222. Doi: 10.1029/RG011i002p00191.

Wang L., et al., 2019. Convectively Coupled Equatorial Waves Simulated by CAMS-CSM. J. Meteorol Res, 33, 949–959. Doi: 10.1007/s13351-019-9021-1.

Wheeler M., Weickmann K.M., 2001. Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Monthly Weather Review, 129(11), 2677–2694. Doi: 10.1175/1520- 0493(2001)129<2677:RTMAPO>2.0.CO;2.

Wheeler M.C., Kiladis G.N., 1999. Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399. Doi: 10.1175/1520- 0469(1999)056<0374:CCEWAO>2.0.CO;2.

Wheeler M.C., Kiladis G.N., Webster P.J., 2000. Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613– 640. Doi: 10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

Xalxo K.L., Mahala B.K., Mohanty P.K., Routray A., Mishra B.B., 2022. Performance assessment of WRF model radiation schemes in simulating the track and intensity of the super cyclonic storm "Amphan". Natural Hazards, 114(2), 1741–1762. Doi: 10.1007/s11069-022-05445-1.

Yanai M, Maruyama T., Nitta T., Hayashi Y., 1968. Power spectra of large-scale disturbances over the tropical Pacific. J. Meteorol. Soc. Japan., 46, 308–323. Doi: 10.2151/JMSJ1965.46.4_308.

Yanai M., Maruyama T., 1966. Stratospheric wave disturbances propagating over the equatorial Pacific. J. Meteorol. Soc. Japan. Ser. II., 44, 291–294. Doi: 10.2151/jmsj1965.44.5_291.

Yang G.-G., Slingo J., Hoskins B., 2009. Convectively coupled equatorial waves in high-resolution Hadley Centre climate Models. J. Clim., 22, 1897–1919. Doi: 10.1175/2008JCLI2630.1.

Yang G.-Y., Hoskins B.J., Slingo J.M., 2007. Convectively coupled equatorial waves. Part I: Horizontal and vertical structures. Journal of the Atmospheric Sciences, 64(6), 1560–1578. Doi: 10.1175/JAS4017.1.

Yu S., Eder B., Dennis R., Chu S.-H., Schwartz S.E., 2006. New unbiased symmetric metrics for evaluation of air quality models. Atmos. Sci. Lett., 7, 26–34. Doi: 10.1002/asl.125.

Zhang C., 2005. Madden-Julian Oscillation. Reviews of Geophysics, 43, RG2003. Doi: 10.1029/2004RG000158.

Downloads

Published

13-11-2025

How to Cite

Satiadi, D., Trismidianto, Purwaningsih, A., Harjupa, W., Fathrio, I., F. Andarini, D., … S. Putri, M. (2025). Assessing WRF-Modeled vertical profiles during MRG wave events on the southern coast of West Java: impact of vertical resolution, domain configuration, and input data. Vietnam Journal of Earth Sciences, 47(4), 607–634. https://doi.org/10.15625/2615-9783/23783

Issue

Section

Articles

Similar Articles

<< < 15 16 17 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.