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ABSTRACT

The Permian-Triassic igneous rocks of the Truong Son Fold Belt, on the northeastern margin of the Indochina
block, formed during Paleotethyan subduction and the subsequent collision with the South China block. Systematic
variations in zircon ages, geochemistry, and isotopic compositions are observed from northern Laos toward the Song
Ma Suture zone, the collisional boundary with the South China block. In the Xiang Khuang-Muang Khoun (MK)
area, 170-200 km from the suture, magmatic rocks (271-253 Ma) include gabbros and I-type granitoids with
relatively higher eNd(t) values (-1.5 to -9) and lower ¥'St/**Sr; (0.704-0.717). Toward the suture, in the Nam Phao-
Kim Cuong area, granitoids dated at 260-251 Ma are predominantly S-type, highly peraluminous granites with
intermediate isotopic €Nd; values (-7.4 to -9) and ¥Sr/*Sr; values (0.7115-0.7285). In the Sam Neua (SN) area,
closest to the suture, granitoids dated at 251-244 Ma are primarily I-type and minorly S-type, with highly enriched
isotopic compositions (eNd; of -8.4 to -14; ¥St/*Sr; between 0.708 and 0.775). The trace-element chemistry of all
granitoids indicates volcanic-arc affinities, though signatures also suggest intraplate and post-collisional influences.
The association of granitoids with coeval gabbro-diorites in the MK area suggests binary mixing between mantle
magmas and Mesoproterozoic crust-derived melts. In contrast, felsic magmas in the SN area likely reflect melting of
diverse crustal components, including Paleoproterozoic continental crust of South China affinity. The suture zone-
ward younging of magmatism is consistent with slab rollback during the final stages of continental collision.

Keywords: Paleotethys subduction, post-collision granitoids, Song Ma Suture, Truong Son Fold belt, Permian-
Triassic granitoids.

1. Introduction (Jinshajiang-Ailaoshan-Song Ma) and to the

Indochina, one of the major continental Southwest (Jin Hong Nang-Sakaeo). This

blocks in Southeast Asia, is bounded by major ~ Makes it a key region for interpreting the
Paleotethyan suture zones to the north closure of the Paleotethys and its
amalgamation with surrounding terranes

*Corresponding author, Email: nghoang@ies.vast.vn (Metcalfe, 201 3) (Fig. 1).
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Figure 1. Simplified map of distribution of granitoids in the TSFB (A) Study area in regional tectonic
structures; (B) Rock sampling locations in Sam (Xam) Neua (SN), Nam Phao (NP), Kim Cuong (KC),
Xieng Khuang (XK), and Muong Khoun MK) areas. Numbers are age data from the literature (black) and
this study (blue). Modified from Phan (2009)

The Truong Son Fold Belt (TSFB),
extending over 100 kilometers across Laos

and Vietnam, forms the Indochina block’s
northeastern margin. It developed through
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subduction along the northern Paleotethyan
margin and subsequent collision with the
South China block (Tran et al., 2008; Liu et
al., 2012; Usuki et al., 2013; Qian et al., 2019;
Hou et al, 2019). Late Carboniferous to
Triassic magmas related to the Indochina
orogeny are widespread in the TSFB and
preserve evidence of oceanic subduction (Jian
et al., 2008; Kamvong et al., 2014), collision,
as well as post-collisional magmatism (Lan et
al., 2000; Tran et al., 2008; Liu et al., 2012;
Qian et al., 2019).

Lan et al. (2000) first noted that I-type
granitoids in the Dien Bien formation, in the
northernmost TSFB, were generated by
subduction under the Indochina margin (see
Tran et al., 2024). Later, Tran et al. (2008)
summarized the geochemical features of
Permian-Triassic felsic magmas across the
TSFB and divided the magmatism into
subduction-,  syn-collision-, and  post-
collision-stage magmatism. Based on U-Pb
isotopic ages, Liu et al. (2012) refined this
sequence into three stages: 280-245 Ma, 245—
230 Ma, and 230-200 Ma. Comparable
studies of Permian-Triassic felsic magmatism
have also been carried out in the northern
Laos section of the TSFB (Wang et al., 2016;
Qian et al., 2019).

In Vietnam, the TSFB is disrupted by
numerous northwest-orienting shear zones,
which complicate the reconstruction of its
original magmatic arc structures (Lepvrier et
al., 1997). In contrast, the Lao segment is less
affected by shearing, making it better suited
for investigating the tectono-magmatic
processes  associated with  Paleotethyan
subduction.

This study presents U-Pb ages, magma
geochemistry, and strontium-neodymium
isotope data for Permian to Early Triassic
magmatic rocks from Laos and Vietnam,
northwestern and western TSFB, respectively.
Our objectives are to define the main
geochemical and isotopic characteristics of
magmatism across different tectonic stages;

(2) constrain the magma sources; and
(3) clarify the Indochina block’s geodynamic
setting in the Permian-Triassic.

2. Geology

The Truong Son Fold Belt (TSFB) is
approximately 50—-100 km wide and extends
over more than 1,000 km across northwest
Vietnam, northeast Laos, and the Vietnam-
Laos border. Its northwestern part is cut by
the sub-meridional Loei belt (Tran-Van et al.,
2020). The TSFB’s northern boundary is
marked by the Song Ma fault that separates it
from the Song Ma suture zone (Tran-Van,
1977; Le et al., 1982; Lepvrier et al., 2008;
Phan et al., 2009; Tran-Van and Vu, 2011).

The study area consists mainly of Early-
Middle Paleozoic and Middle-Late Paleozoic
to Early Mesozoic sedimentary, metamorphic,
and magmatic rocks, with Permian-Triassic
intermediate to felsic intrusions being
dominant (Fig. 1). In Laos, Neoproterozoic-
Cambrian metamorphic rocks, including
gneiss, mica schist, and amphibolite, occur in
three narrow belts, separated by Mesozoic
sedimentary  sequences of terrigenous,
terrigenous-carbonate, and  volcaniclastic
rocks (Fig. 1). Proterozoic metamorphic suites
are exposed in the Nong Het area, east of
Xiang (Xieng) Khuang province near the
Thanh Hoa province border in Vietnam. In
eastern Huaphan province (Sam Neua region),
the Sop Bao area shows a similar geological
context to the central part of the western Song
Ma suture zone, where Neoproterozoic and
Early Paleozoic sedimentary-metamorphic
rocks, serpentinite, and scattered metabasalt,
metadolerite, diorite, and plagiogranite are
widespread (e.g., Zhang et al., 2020) (Fig. 1).

The Permian-Triassic magmatic rocks of
the study area are primarily composed of
hornblende- and biotite granite, granodiorite,
and minor occurrences of gabbro and quartz
diorite. Hornblende granites form intrusions
ranging from a few tens to several hundred
square kilometers, widely distributed in
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Muang Khoun (MK), Xiang Khuang (XK),
and northeast of Sam Neua (SN) (Figs. 1 &
2a-A, -B, -C). Biotite granites occur in the
SN, MK, and Nam Phao (NP) areas (Fig. 2a-
D, -E, -F) as stocks or batholiths several
hundred km? in size. In the SN and MK areas,

A - LP-50/1 3

some biotite granites contain muscovite or
garnet. Gabbro and quartz diorite appear as
enclaves within granitoids in the MK area,
and fine-grained gabbro also forms minor
intrusions in Devonian metasediments near a
biotite granite body (Fig. 2a-A, -B).

Biotite-amphibole ‘

B - LAO-37

Figure 2a. (A) Outcrop of quartz diorite (LP-50/1) among Paleozoic metamorphic rocks, MK area;
(B) Enclaves of quartz diorite (LAO-37) in hornblende granite (LAO-37A) in Muong Khoun; (C) Biotite
granite containing garnet in sample LAO-10, SN area; (D) Two-mica granite in NP area, sample LP-63/3;

(E) Outcrop of two-mica granite in Kim Cuong; (F) Granite quarry in the Kim Cuong area

In the SN area, volcanic rocks such as
rhyodacite and rhyolite are present and
widespread in the Anisian (Middle Triassic)
volcanoclastic deposits of the SN basin (Tran
et al., 2019). These are closely associated with
hornblende granites. In the XK area,
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porphyritic dacite occurs together with
granodiorite and hornblende granite (Fig. 1).

3. Petrography

Granitoid samples were collected from
northern Laos, including Muang Khoun
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(MK), Xiang Khuang (XK), Sam Neua (SN),
and Nam Phao (NP), as well as from Kim
Cuong (KC) in western Vietnam, which is the
continuation of the Nam Phao block (Fig. 1).
Below is a summary of their main
petrographic features.

Granodiorite: Samples from MK (e.g.,
LP-50/1, LP-50/2-1), XK (e.g., LAO-2), and
SN (e.g., LAO-10) are fine- to medium-

—

E- TA24-13/2a |\
0 o ¥

o

grained with sub-euhedral textures. These
magmas are comprised mainly of K-feldspar,
plagioclase, hornblende, biotite, and quartz,
with apatite, titanite, and zircon as accessory
minerals (Fig. 2b-A, -B). Biotite and
hornblende are typically brownish-green to
green in color and often exhibit chloritization
and partial epidotization.

Figure 2b. Microphotographs of (A) Quartz diorite, LP-50/1 and (B) Granodiorite, LP-50/1-2 in the MK
area; (C) Biotite granite, LAO-2, XK area; (D) Garnet-bearing biotite granite, LAO-10, SN area; (E)
Two-mica granite, TA24-13/2a (plain light), NP area; (F) Two-mica, TA24-13/2b (polarized light); (G)
Two-mica granite under plain light, sample TA23-86, Kim Cuong area; (H) Two-mica granite, under
polarized light, sample TA23-87, Kim Cuong area. The abbreviations Q: Quartz; Kfs: K-feldspar; Pl:
Plagioclase; Bi: Biotite; Amp: Amphibole; and Cpx: clinopyroxene
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Hornblende granite: Samples from XK
(LAO-2, LAO-3, LAO-4) (Fig. 2b-C) and MK
(LAO-29, LAO-37A, LAO-38, LAO-40) have
similar mineral assemblages to granodiorite
but contain higher proportions of feldspar.

Biotite granite: Samples from MK (e.g.,
LAO-41, LAO-43A) and SN (e.g., LAO-9,
LAO-10, LAO-11A-B, LAO-15, LAO-17)
(Fig. 2b-D) share a mineral assemblage with
hornblende granite but lack hornblende. Some
contain garnet, sillimanite, and muscovite.

Two-mica granite: Samples from NP (e.g.,
LP-63/1, LAO-1D) and KC (e.g., TA24-13/2)
are medium- to coarse-grained, and subhedral
to anhedral textured. The magmas are
comprised of muscovite, biotite, K-feldspar,
plagioclase, and quartz, with apatite, zircon,
titanite, and hornblende as accessory minerals
(Figs. 2b-E, -F, -G, -H).

4. Analytical procedures

4.1. U-Pb age dating and Hf isotope
measurements

Zircon crystals were extracted from ~1 kg
magmatic rocks using magnetic and heavy
liquid methods, followed by hand-picking
under a binocular microscope. Their internal
structures and inclusions were examined using
transmitted/reflected light microscopy, and
cathodoluminescence (CL) imaging with a
Gatan Mini-CL attached to a JEOL JSM-
6360LV SEM at Academia Sinica (Taipei).
Selected grains were mounted in epoxy and
polished to half-thickness for in-situ analyses.

Zircon U-Pb dating analysis was
performed at NTU-Geosciences using an
Agilent 7500s LA-ICP-MS with a New Wave
UP213 laser (30 um spot size). GLITTER 4.0
software and GJ-1 zircon, the external
standard (608.5 = 0.4 Ma; Jackson et al.,
2004), were used to refine the data. Reference
zircons 91500 and PleSovice were periodically
measured and yielded ages within the
recommended range, respectively: 1062.2 +
5.1 Ma (Wiedenbeck et al., 1995) and 339.4 +
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2.9 Ma (Slama et al., 2008). Standard Pb
correction  followed  Andersen  (2002).
ISOPLOT 4 (Ludwig, 2008) was used to
construct the Concordia and age-probability
plots. Because young zircons produce little
*pb, pooled **°Pb/>*U ages were used to
represent crystallization ages, reported at 2c
(95% confidence).

Lu-Hf isotopic analyses were performed at
Academia Sinica employing a Nu Plasma HR
MC-ICP-MS coupled with a Photon Machines
Analyte G2 excimer laser. Analyses were
performed on the same zircon crystals used
for U-Pb dating, with a ~40 um spots, 26
seconds of ablation time, an 8 Hz repetition
rate, and 100 mJ of energy. The Mud Tank
zircon was used as a secondary standard,
yielding a "°Hf/'’Hf ratio of 0.282530 =
0.0050 (26, n = 63), consistent with published
values (Woodhead and Hergt, 2005). Model
ages and eHf values were calculated using
the '"Lu decay constant of 1.867 x 107" yr!
(Scherer et al., 2001). Full zircon U-Pb and
Lu-Hf data are given in Supplementary A (*).

4.2. Major and trace element analysis

About 100 g of fresh, crushed samples
were cleaned ultrasonically in deionized
water, dried, and ground in an agate mill.
Major elements were determined by X-ray
fluorescence (XRF) on fused glass beads at
Akita University, Japan, using a Rigaku Mini-
Z Analyzer. For trace elements and isotopes,
powders (~200 mg) were digested using
mixtures of concentrated HCIO, (11 M), HF
(26 M), and HNOs (15 M). The acids were
mixed in equal volume (1:1:1 mL) in 15-mL
Savillex beakers, and heated on a hotplate at
135 degrees for at least 72 hours. The solution
was then refluxed with 1 mL of 15 M HNO;,
evaporated, and re-dissolved in 3 M HNO;. A
small aliquot (~10%) was diluted to 0.5 M
HNO; for trace element analysis at Akita
University, using a quadrupole (Q)-ICP-MS
(Agilent 7500s). The remaining solution was
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reserved for Sr and Nd isotope separation.
During the ICP-MS analysis, reference
materials JB-3, JA-2, JGb-1, JG-2, JG-3, and
JR-3 were used for calibration and as external
references to assess analytical accuracy.
Analytical uncertainties are between 0.5 and
3% for major elements and between 1 and
10% for trace elements. Detailed procedures
follow those described by Fukuyama et al.
(2013, 2017).

Trace elements with uncertainties above
10% and up to 20% were re-analyzed. These
include Rb, Sr, Nb, Zr, and Y. They were
measured by XRF from pressed pellets at the
Institute of Earth Sciences (former Institute of
Geological Sciences, VAST), using Bruker
Pioneer XRF mass spectrometer to verify data
precision and accuracy (Le et al., 2017).

Major and trace element data are reported
in Table 1.

4.3. Whole-rock Sr and Nd isotope
analysis
Strontium and neodymium  isotope

separation was carried out using cation
exchange resins (Bio-Rad AG 50W-X8 for Sr;
Eichrom Ln resin for Nd). Isotopic ratios were
acquired at Academia Sinica using Finnigan
MAT 262 and TRITON mass spectrometers,
with a double-Re-filament configuration.
Mass fractionation was normalized to **Sr/**Sr
=0.1194 and "*Nd/'**Nd = 0.7219. Standards
yielded *Sr/*’Sr = 0.710247 + 0.000026
(NBS987; n=25) and '"*Nd/'"**Nd = 0.511814
+ 0.000009 (La Jolla; n= 25), within accepted
values. Procedural blanks were ~210 pg Sr
and ~120 pg Nd. Within-run precision (20)
was better than +0.000010. Details of
chemical and analytical procedures follow
Jahn et al. (2009). The Sr-Nd isotopic data are
reported in Supplementary B (*).

Table 1. Geochemical and isotopic compositions of Permian-Triassic granitoitds in the Truong Son Fold Belt

Sample LAO-9 LAO-10 LAO-11A LAO-11B LP-63/1 LP-63/2
Location Sam Nuea Sam Nuea Sam Nuea Sam Nuea Nam Phao Nam Phao
Rock type S-type S-type S-type S-type S-type S-type
Bt granite | Grt-Bt granite | Bt granite Bt granite Bt granite Bt granite
Age (mill. y) 251 255 254
Si0, 72.88 65.57 68.28 74.26 67.22 67.61
TiO, 0.27 0.80 0.48 0.20 0.67 0.6
AlLO4 14.57 15.45 13.72 13.43 14.82 14.83
Fe,0; 2.12 5.46 4.71 0.76 4.06 3.85
MnO 0.03 0.08 0.09 0.01 0.04 0.04
MgO 0.65 2.27 2.84 0.26 241 222
CaO 0.61 2.99 3.83 0.37 247 2.29
Na,O 2.60 2.29 1.11 1.73 2.01 2.02
K,0 5.11 3.96 2.75 8.65 5.03 5.01
P,0s 0.12 0.22 0.12 0.12 0.12 0.12
LOI 1.69 1.39 2.77 0.75 0.93 0.83
Total 100.65 100.48 100.70 100.55 99.8 99.42
Rb* 213.0 169.4 1414 383.0 267.0 248.0
Sr* 105.0 272.0 95.0 80.0 221.0 208.0
Ba 753.0 954.0 325.0 307.0 860.0 890.0
Zr* 177.0 241.0 176.0 63.0 269.0 256.0
Hf 5.0 7.5 5.5 1.1 0.7 0.4
Nb 8.2 22.7 12.8 9.6 15.9 12.0
Ta 1.0 2.5 14 1.4 0.9 14
Sc 5.0 13.0 10.0 7.0 8.7 6.6
Y* 21.9 28.3 22.9 12.1 14.0 14.8
La 40.0 58.9 30.0 12.5 61.7 224
Ce 78.5 114.5 58.6 24.7 125.7 44.4
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Pr 8.9 13.1 6.6 2.8 14.1 5.1
Nd 31.2 46.2 23.7 10.5 50.2 18.4
Sm 6.4 8.3 4.4 25 9.3 4.0
Eu 1.0 1.5 0.8 0.5 1.5 0.8
Gd 5.7 6.9 3.9 2.5 7.9 3.7
Tb 0.8 0.9 0.6 0.4 0.9 0.5
Dy 43 49 3.3 22 3.5 2.8
Ho 0.8 0.9 0.7 0.4 0.5 0.5
Er 1.9 2.5 1.9 1.2 1.1 1.3
Tm 0.3 0.4 0.3 0.2 0.1 0.2
Yb 1.8 2.4 2.0 1.0 0.7 1.3
Lu 0.3 0.4 0.3 0.1 0.1 0.2
v 25.0 94.0 61.0 3.5 52.0 21.3
Cr 21.0 63.0 70.0 323 37.7 11.8
Co 3.6 10.9 10.7 1.3 7.8 32
Ni 6.0 17.0 24.0 1.4 13.4 5.8
Cu 18.0 14.0 10.0 75.9 - -
Zn 23.0 71.0 67.0 9.9 - -
Pb 28.0 27.0 21.0 40.7 24.1 27.7
Ga 17.1 19.0 18.9 15.0 - -
Th 24.2 28.1 9.8 6.3 32.4 10.5
[§] 6.6 5.7 4.4 4.6 2.1 48
¥7Sr/%sr 0.744392 0.723915 0.741738 0.778260 0.724139 0.731183
+2s 0.000010 0.000009 0.000008 0.000010 0.000009 0.000010
"Nd/™Nd 0.511946 0.511930 0.511783 0.511855 0.512043 0.512075
+26 0.000008 0.000009 0.000008 0.000010 0.000010 0.000008
¥Rb /*°Sr 5.660 1.738 4.153 13.357 3.371 3.327
7Sr/%Sr(t) 0.741712 0.721309 0.739068 0.775458 0.721532 0.728551
7S m/™Nd 0.12549 0.11100 0.11530 0.14659 0.11425 0.13301
NA/™NA(t) 0.51174 0.51175 0.51159 0.51161 0.51185 0.51185
eNd(0) -13.5 -13.8 -16.7 -15.3 -11.6 -11.0
eNd(t) -11.3 -11.1 -14.1 -13.7 9.0 9.0
Toum 2.1.E+09 1.8.E+09 2.1.E+09 2.9.E+09 1.7.E+09 2.0.E+09
Sample [TA23-75/2] TA23-86 TA23-87 | TA23-88/2 | TA24-13/2 | TA24-13/3 | TA24-13/5
Location |Thanh Hoa| Kim Cuong | Kim Cuong | Kim Cuong | Kim Cuong | Kim Cuong | Kim Cuong
Rock type I-type S-type S-type S-type S-type S-type S-type
Bt granite |2-mica granite|2-mica granite|2-mica granite|2-mica granite|2-mica granite|2-mica granite
Age (mill. y)| 242 249 260 260
Si0, 74.52 70.94 67.99 71.41 70.75 62.20 71.91
TiO, 0.10 0.30 0.39 0.14 0.22 0.80 0.13
AlLO; 13.33 14.71 15.60 13.94 14.39 16.41 14.47
Fe,0; 2.02 2.87 4.06 1.77 3.20 6.50 1.95
MnO 0.03 0.06 0.07 0.05 0.07 0.07 0.04
MgO 0.16 0.71 0.97 0.52 0.63 1.98 0.35
CaO 1.13 1.79 3.03 1.24 1.64 4.18 0.82
Na,O 3.81 2.92 3.25 3.78 3.02 277 3.24
K,0 4.20 4.26 3.52 4.44 3.68 2.87 4.87
P,0;5 0.02 0.16 0.14 0.06 0.11 0.26 0.25
LOI 0.65 0.81 0.91 171 1.31 1.79 1.20
Total 99.97 99.52 99.92 99.05 99.03 99.81 99.24
Rb* 191.1 225.0 157.0 229.0 145.0 131.0 305.0
Sr* 61.2 180.0 300.0 110.0 240.0 420.0 60.0
Ba 455.9 520.0 670.0 140.0 540.0 1080.0 180.0

316




Vietnam Journal of Earth Sciences, 48(2), 309332

Zr* 98.0 107.6 172.5 56.3 - - -
Hf 3.9 - - - - - -
Nb 77 11.0 11.0 8.0 12.0 13.0 10.0
Ta 1.1 1.6 1.1 1.5 0.9 0.5 1.6
Sc - - - - - - -
Y* 415 23.2 26.1 34.7 36.7 22.7 17.0
La 25.6 28.9 443 17.2 35.4 522 10.9
Ce 49.7 53.6 86.8 36.2 70.4 108.0 21.5
Pr 5.7 6.9 10.7 4.6 93 12.0 25
Nd 22.3 23.1 39.0 16.8 31.9 442 8.9
Sm 5.2 45 6.6 3.5 73 8.7 2.4
Eu 0.3 1.0 1.4 0.4 1.4 2.1 0.4
Gd 53 35 6.0 44 6.3 7.0 2.8
Tb 1.0 0.6 0.8 0.8 1.1 1.0 0.5
Dy 6.3 4.0 44 53 6.6 5.2 32
Ho 1.4 0.7 0.9 1.1 1.4 0.9 0.5
Er 4.4 1.9 2.4 3.5 3.7 22 13
Tm 0.7 0.3 0.4 0.5 0.6 0.4 0.2
Yb 438 2.6 2.0 3.7 35 22 1.1
Lu 0.7 0.4 0.3 0.6 0.5 0.3 0.2
\ 2.9 28.0 36.0 15.0 - 10.0 -
Cr 7.4 0.0 0.0 0.0 0.0 0.0 0.0
Co 1.1 42 5.2 1.6 4.4 11.1 23
Ni 44 9.0 11.0 11.0 119.0 48.0 27.0
Cu 15.4 20.0 - - - 20.0 -
Zn 33.6 48.0 51.0 23.0 49.0 104.0 108.0
Pb 30.6 39.0 26.0 38.0 33.0 42.0 48.0
Ga 17.0 19.0 17.0 17.0 19.0 16.0
Th 21.1 12.5 13.8 7.2 11.6 13.0 2.6

U 6.3 5.0 8.0 10.0 3.0 1.5 8.0
Y31r/%%Sr | 0755642 | 0.725815 0.714076
25 0.000009 | 0.000009 0.000009
NA/™Nd | 0512124 | 0.512093 0.512112
0 0.000012 | 0.000014 0.000012
$TRb /%°Sr 8.719 3.488 1.460
Sr/Sr(t) | 0752922 | 0.723202 0.711506
YTSm/!™Nd | 0.14290 0.12027 0.10448
"SNd/™Nd(t)] 0.51189 0.51189 0.51194
eNd(0) -10.0 -10.6 -10.3
eNd(t) -8.4 8.3 -7.4
Toum 22E+09 | 1.7.E+09 1.4.E+09
Sample LAO-2 LAO-3 LAO-4 LAO-37A | LAO-38 | LAO-40 | LP-50-1
Location Xiang Khuang |Xiang Khuang é:::fg Muang Khoun| 11\(/[}111211115 11\(/[}111211115 11\(/[1111231%
I-type I-type I-type I-type I-type I-type I-type
Rock type Bt granite Bt granite Bt granite [Bi-Hbl granite] gBrlz_uI;Illt); Bt granite ?ﬁggﬁg_
Age (mill. y) 254 265 257 256 270
SiO, 71.44 70.88 68.65 71.16 73.28 76.61 56.26
TiO, 0.14 0.15 0.42 0.38 0.19 0.08 1.12
AlLO; 15.32 15.38 14.94 14.20 14.04 12.48 16.56
Fe,0; 2.65 2.76 3.25 3.01 1.90 1.16 7.01
MnO 0.06 0.06 0.05 0.06 0.05 0.02 0.14
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MgO 0.32 0.41 1.24 0.62 0.26 0.02 5.06
CaO 2.42 2.38 1.76 1.65 1.06 0.49 6.54
Na,O 3.74 3.94 3.08 3.41 3.76 3.83 3.87
K,O 3.36 3.31 4.05 5.05 4.87 432 1.75
P,0; 0.06 0.04 0.12 0.07 0.04 0.02 0.34
LOI 0.95 0.78 2.34 0.76 0.74 0.46 1.16
Total 100.46 100.09 99.89 100.37 100.19 99.49 99.81
Rb* 159.1 178.0 185.0 174.7 2253 265.0 67.0

Sr* 139.0 135.0 214.0 97.0 72.0 11.1 437.0
Ba 823.0 738.0 401.0 1052.0 504.0 151.0 509.0
Zr* 121.0 130.0 156.0 294.0 177.0 148.0 235.0
Hf 4.0 23 1.7 8.9 6.8 3.1 1.2
Nb 7.9 75 11.4 18.8 20.7 27.8 12.8
Ta 0.9 1.6 2.1 1.8 2.0 1.9 1.0
Sc 5.0 8.0 2.0 6.0 16.6
Y* 29.7 27.0 38.0 54.7 58.8 95.0 25.5
La 29.8 32.9 33.2 87.6 45.8 15.9 40.1
Ce 60.2 66.0 68.0 140.7 85.6 38.7 75.7
Pr 7.0 75 77 16.8 10.0 55 8.2
Nd 26.0 28.8 29.3 56.2 35.0 23.7 29.4
Sm 5.6 5.8 6.3 10.4 7.8 8.2 53
Eu 1.1 1.1 1.0 1.2 0.6 0.1 1.6
Gd 53 5.4 6.6 9.9 8.1 10.0 5.6
Tb 0.8 0.6 1.0 1.5 1.4 1.8 0.8
Dy 47 33 5.6 9.4 8.9 12.0 44
Ho 0.9 0.6 1.1 2.0 2.0 2.5 0.9
Er 2.6 1.5 3.1 55 5.7 7.4 25
Tm 0.4 0.2 0.5 0.9 0.9 1.1 0.4
Yb 25 1.3 2.9 55 5.9 6.9 2.4
Lu 0.4 0.2 0.4 0.8 0.9 1.0 0.4
\ 15.1 9.8 64.0 24.5 16.5 1.4 108.9
Cr 7.0 1.6 18.2 16.0 8.0 2.1 50.9
Co 1.6 2.0 5.7 4.0 2.0 0.4 18.1
Ni 2.0 1.1 6.8 6.0 2.0 0.7 20.2
Cu 2.0 1.9 4.1 2.0 3.0 3.0 -
Zn 34.0 36.4 52.5 44.0 43.0 40.8 -
Pb 24.0 24.1 33.3 13.0 32.0 30.1 8.0
Ga 18.5 17.9 17.7 19.9 21.0 20.7 -
Th 15.1 14.7 16.6 29.9 34.7 33.8 8.8
U 4.4 3.0 5.8 49 75 8.0 1.6
¥Sr/50sr 0.722697 0.723499 0.720327 0.706948
25 0.000008 0.000010 0.000007 0.000007
™Nd/™Nd 0.512089 0.512103 0.512075 0.512427
26 0.000009 0.000008 0.000009 0.000008
$TRb /*°Sr 3.193 3.679 2412 0.428
¥S1/%Sr(t) 0.720095 0.720894 0.717734 0.704243
TS m/1**Nd 0.13302 0.12474 0.13317 0.11150
TSN/ Nd(1) 0.51187 0.51190 0.51185 0.51224
eNd(0) -10.7 -10.4 -11.0 4.1
eNd(1) -8.7 -8.2 -9.0 -1.5
Toum 2.0.E+09 1.8.E+09 2.0.E+09 1.1.E+09
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Sample | LP-50-2-1 | LAO-41 | LAO-43A Sm 5.2 6.7 8.0
Muang Muang Muang Eu 1.4 1.3 1.1
Location Khoun Khoun Khoun Gd 5.4 6.5 8.1
I-type S-type S-type Tb 0.7 0.8 1.2
Rock type . Grt-Bt . Dy 3.8 4.2 6.7
Diorite granite Bt granite Ho 08 08 13
Age (mill. y) 271 253 Er 2.1 1.9 3.7
SiO, 68.49 68.06 68.30 Tm 0.3 0.3 0.5
TiO, 0.44 0.67 0.66 Yb 2.0 1.4 3.1
ALO, 15.14 14.49 13.77 Lu 0.3 0.2 0.5
Fe,0; 3.23 473 4.82 v 20.2 64.0 67.4
MnO 0.07 0.06 0.06 Cr 6.9 27.6 26.7
MgO 1.03 1.40 1.49 Co 4.0 9.8 9.5
CaO 2.7 2.40 2.39 Ni 25 14.1 11.5
Na,O 4.44 2.59 2.46 Cu - 19.8 12.5
K,O 3.53 3.78 428 Zn - 78.8 69.5
P,0s 0.13 0.19 0.18 Pb 14.4 25.1 28.7
LOI 0.56 0.97 1.56 Ga - 19.5 17.9
Total 99.69 99.34 99.99 Th 15.6 19.1 23.9
Rb* 87.0 192.0 187.0 U 1.7 5.2 43
Sr* 232.0 159.0 136.0 7S1/%0Sr 0.709614 | 0.725406 | 0.724744
Ba 1287.0 638.0 579.0 25 0.000010 | 0.000010 | 0.000012
Zr* 286.0 270.0 262.0 "Nd/™Nd | 0.512361 0.512153 0.512157
Hf 1.8 0.4 0.6 0 0.000010 | 0.000001 | 0.000010
Nb 13.6 15.6 153 $TRb /*°Sr 1.046 3.369 3.836
Ta 0.9 2.0 2.1 YSr/sr(t) | 0.706898 | 0.722794 | 0.722135
Sc 6.2 20.0 25.0 ISm/™Nd | 0.09795 0.11921 0.12596
Y* 22.1 32.0 45.0 BNI/™NA| 0.51220 0.51195 0.51195
La 59.7 41.2 45.2 eNd(0) 54 95 94
Ce 103.6 81.6 91.6 eNd(t) 23 71 72
Pr 10.3 9.3 10.5 Tou 1.0.E+09 | 1.6.E+09 | 1.7.E+09
Nd 32.9 34.9 39.2
Remarks:

¥781/%Sr, = (VS1/*°Sr) gampte X EXP(-A*'Rb x 1)
Where t = 250; A¥Rb = 1.42 x 10" /year

eNdg) = (("*Nd/"**Nd)sample/ CHUR presenny)-1) X 10,000); '**Nd/'**Nd of present CHUR is 0.512638
NN = (CMSm/ Ndample) * (2.7183(A*Sm x t x 10%)-1) + "*Nd/"*Nd ample)

t=250, A'*"Sm = 6.54 x10"%/year

eNd(y = (("*Nd/"**Nd,/CHUR,) -1 x 10,000); CHUR at 250 Ma is 0.512316
Tom = Ln((DM gpresent — **Nd/"“*Nelanpi)/(""S10/"**Ndctumo — *'Sm/ "Nl gampie)) + 1 x 1/21'Sm)
DM (present i8 0.51315, "7Sm/"™**Ndcpur is 0.2137, 1'*’Sm is 6.54 x 10" */year

(*) analyzed by XRF from pressed samples

5. Analytical results
5.1. Zircon U-Pb ages and Hf isotopic data

Sixteen zircon samples from SN, NP, KC,
XK, and MK granitoids were dated by U-Pb,
with Hf isotopic analyses on five samples.
The U-Pb isotopic data are summarized in
Supplementary A (*) and plotted in Fig. 3. At

the same time, Hf isotope results are given in
Supplementary B (*). Weighted-average ages
were calculated from 206Pb/238U for zircons
younger than 1000 Ma and from *’Pb/**Pb
for older detrital cores. Age uncertainties are
reported at 26. Crustal model ages (Tpy) were
calculated assuming an average crustal
7Lu/"""Hf of 0.015 (Griffin et al., 2002).
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Figure 3. Concordia plots for the Permian-Triassic magmas from northern Laos and western Vietnam
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Figure 3. Cont.

5.1.1. Sam Neua (SN) granitoids

Hornblende granites (LAO-15, LAO-29)
contain zircons 90-190 pum long with
oscillatory rims and sector cores. U contents
are 140-790 ppm (Th/U = 1.0-3.0). Weighted
average ages are 247 + 2 Ma (n = 19) and
244 + 2 Ma (n = 22). ¢Hf{(t) values vary from
-86 to -14 and from -7.5 to -2.0,
corresponding to Tpy ages of 1.4-1.8 Ga.

Garnet-bearing granite (LAO-10) zircons
are 110290 um long, characterized by
oscillatory zoning and occasional detrital
cores. Magmatic domains (U = 130-340 ppm;
Th/U = 0.4-1.3) give 251 + 3 Ma (n = 14).
Detrital cores range from 407 Ma to 3469 Ma.

gHf(t) values of Permian domains are highly
variable (-44.8 to -8.2; Tpuy = 4.1-1.8 Ga).
Detrital cores also span a wide range (-33.9 to
+15.9; 3.5-1.8 Ga).

5.1.2. Nam Phao (NP) and Kim Cuong (KC)
granitoids

Muscovite-bearing  granites  (LP-63/1,
LP-63/2) contain zircons 190-420 um long
with sector cores, oscillatory rims, and
detrital cores. Uranium concentrations are
50-1300 ppm (with Th/U = 0.29-3.18), but
dark domains are enriched in U (1310-
2730 ppm) with very low Th/U (0.03-0.05).
Ages are 255+ 3 Ma (n=11) and 254 + 3 Ma
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(n = 10). Detrital cores span 340-3458 Ma,
while dark domains yield younger ages
(214215 Ma).

Two-mica granites (TA23-86, TA24-13/2)
contain zircons 210-430 pum long, with
uranium concentrations up to 5125 ppm with
low Th/U (0.1-0.75). Ages are 249.3 +
2.0 Ma (n=14) and 259.8 £ 2.3 Ma (n = 13).

Summary, granitoids from Xieng Khuang
and Muang Khoun record crystallization ages
of 265-253 Ma. The Nam Phao and Kim
Cuong batholiths, located at similar distances
from the Song Ma Suture, also yield ages of
260-249 Ma. Sam Neua granitoids, together
with nearby Song Ma intrusions (Tran et al.,
2022), are younger (247-227 Ma).

5.1.3. Xieng Khuang (XK) granitoids

Zircons from hornblende granite (LAO-2)
and granodiorite (LAO-4) are 90-300 pm
long, with aspect ratios from 1.4 to 5.3.
LAO-2 exhibits oscillatory or sector zoning,
whereas LAO-4 typically features dark rims
and detrital cores. U contents range
90-1410 ppm (Th/U = 0.45-2.2), with some
dark domains in LAO-4 reaching up to
5440 ppm. Oscillatory domains yield ages of
254 £ 2 Ma (n = 20) and 265 + 5 Ma (n = 5)
for LAO-2 and LAO-4, respectively.
Detrital cores range from Paleozoic to
Archean, while dark domains give younger
ages (151-235 Ma), likely due to
hydrothermal modification. eHf(t) values of
Permian-Triassic zircons range between +0.4
and -6.4, with Tpy ages of 1.3—1.7 Ga; detrital
cores range more widely (+9.2 to -10.3;
1.2-2.2 Ga).

5.1.4. Muang Khoun (MK) granitoids

Hornblende granites (LAO-37A, LAO-38)
contain zircons 90-170 pm long with
oscillatory rims and sector cores. U contents
range 310-1780 ppm (Th/U = 0.4-3.9).
Weighted average ages are 256.8 £ 3.6 Ma
(n = 11) and 256.1 + 4.4 Ma (n = 7). One
detrital core shows an age of 964 Ma; the
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dark domains, in contrast, give ages of
130-236 Ma.

Biotite granite (LAO-43A) zircons are
130-150 pm long, with magmatic domains
showing 160-1080 ppm U (Th/U = 0.41-3.0).
A coherent age of 253 + 4 Ma (n = 10) was
obtained, while four detrital cores range from
929 to 1956 Ma.

Quartz diorite (LP-50/1) and granodiorite
(LP-50/2-1) zircons (120-240 um) yield
ages of 2704 + 3.0 Ma (n = 16) and
271.6 £ 2.4 Ma (n = 22). Detrital cores range
737-2055 Ma.

5.2. Major and trace element results

The granitoids are grouped by locality.
Xieng Khuang and Muang Khoun, with
similar ages and proximity, are treated as the
XK-MK plutons (Fig. 1). Nam Phao and Kim
Cuong, spanning the Laos-Vietnam border,
are described as a single batholith. The
younger Sam Neua granitoids (245-247 Ma),
together with nearby Triassic intrusions in the
Song Ma Suture in Vietnam (Tran et al.,
2022) and Bu Rinh I-type mica granites
(242240 Ma), form a Triassic intrusive group

(Fig. 1).
5.2.1. Major element characteristics

XK-MK samples span a wide range of
Si0, (56-78 wt.%) and Na,0O+K,0
(5-8.3 wt.%), plotting mainly in the granite-
granodiorite fields, with a few in quartz
monzonite (Fig. 4). A single low-SiO2 sample
(LAO-50-1; 563 wt% SiO,, 5 wt%
Na,0+K,0) falls in the gabbro—diorite field.
Sam Neua granitoids (63-77 wt.% SiO,,
Na,0+K,O0 = 3-11 wt.%) plot between
granodiorite and granite fields. NP-KC biotite
granites (63—-73 wt.% Si0O2) lie mainly in
granodiorite. Most granitoids are of the high
potassic calc-alkaline series (K,O = 2.5-4.8
wt.%), with Triassic Sam Neua granitoids
plotting in the calc-alkaline field, while two
NP-KC samples extend into shoshonite

(Fig. 5).
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Figure 5. K,0-Si0; classification plot

(e.g., Peccerillo and Taylor, 1976) for Permian-

granitoids from the SN, and NP-KC, and XK-MK ~ Triassic magmatic rocks from the SN, NP-KC,

areas in northern Laos and western Vietnam

Across all groups, felsic magmas

and MK-XK areas in northern Laos and
western Vietnam

suggesting fractional crystallization

show reverse correlations between SiO, of  hornblende/orthopyroxene,  feldspar,
and CaO, Al,0O3;, Fe,0O; and MgO (Fig. 6), plagioclase, and mica.
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Figure 6. The correlation of (wt.%) SiO, versus (wt.%) CaO, Al,0O3, Fe,05, and MgO for the
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western Vietnam. Arrows indicate fractional crystallization of plagioclase (P1), alkali feldspars (A-Fsp),
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Alumina saturation ratios (Maniar and
Piccoli, 1989) show most XK-MK granitoids
are metaluminous I-type (A/NK = 1.5-3;
A/CNK = 0.9-1.1). NP-KC granitoids are
mainly metaluminous I-type, though a few
plot in peraluminous S-type fields. Sam Neua
and nearby Triassic granitoids (A/NK = 1.4—
3.5; A/CNK = 0.8-1.3) primarily fall within
the peraluminous field (Fig. 7).
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Figure 7. Al/Na+K vs. Al/Ca+Na+K diagram
(e.g., Maniar and Piccoli, 1989) for the
Permian-Triassic magmatic rocks from the
SN, NP-KC, and XK-MK areas in
northern Laos and western Vietnam

5.2.2. Trace element characteristics

In 1000Ga/Al vs. Zr and Zr+Nb+Cet+Y
discrimination diagrams (Whalen et al.
(1987), several XK-MK samples plot in the
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A-type field (1000Ga/Al > 2.5; Zr > 250 ppm;
Zr+Nb+Ce+tY > 350 ppm), while most
NP-KC, SN, and some XK-MK samples fall
in mixed I- and S-type fields (Figs. 8a-b).

Primitive-mantle normalized trace-element
patterns are similar across groups, with
negative Nb, Ta, Sr, P, Ti (and locally Hf)
anomalies, and positive Th, U, Pb peaks
(Fig. 9). Chondrite-normalized REE patterns
are also consistent: high in LREE, smooth
decrease to heavy REE, slight negative
anomalies at Eu, with ratios of [La/Sm]y from
3 to 4, and [La/Yb]y between 5 and 17 (up to
21-22 in some MK samples, e.g., LP-50-2-1,
LAO-41; Table 1).

5.2.3. Sr-Nd isotopic characteristics

Initial Sr-Nd isotopes (at t =250 Ma) show
enriched signatures. Most XK-MK granitoids
have (*’Sr/**Sr)i = 0.718-0.722, except two
older MK samples (ca. 270 Ma; LP-50-1, LP-
50-2-1) with lower ratios (0.704—0.707). Their
eNdi values range from -4 to -11, forming two
isotopic groups (Fig. 10).

The Sam Neua granitoids are the most
enriched, with (*’Sr/**Sr)i ratios ranging from
0.708 to 0.756 and eNdi values of -7 to -14.
NP-KC granitoids show narrower variation:
(*’Sr/**Sr)i = 0.71-0.73, eNdi = -7.3 to -9.
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Figure 8. The granitoid type affinity discrimination diagrams (Whalen et al., 1987) for the
Permian-Triassic felsic magmas from the TSFB. (a) Zr (ppm) vs. 10000xGa/Al diagram, and
(b) Zr+Nb+Ce+Y (ppm) vs. 10000xGa/Al diagrams. See descriptions in the text
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6. Discussions

6.1. Geochronology and tectono-magmatic
evolution

Qian et al. (2019) divided the magmatic
rocks of northern Laos into four groups:
(1) Early Permian (281-276 Ma) high-K,
I-type  hornblende  granodiorite-granites;
(2) 274-258 Ma high-K biotite granites with
transitional I-S affinities; (3) ca. 261 Ma
I-type felsic rocks; and (4) Late Triassic
(234-221 Ma) I-type granitoids. Our results,
however, show broader age ranges.
Hornblende-bearing I-type granitoids span
272-244 Ma, and biotite granites (and felsic
volcanics)  cluster at 257-251 Ma,
significantly younger than those reported by
Qian et al. (2019).

This overlap makes classification by rock
type problematic. Instead, the data suggest a
temporal migration: Early Permian-Triassic
granitoids (271-255 Ma) are most prominent
in Xieng Khuang-Muang Khoun (XK-MK),
while younger intrusions (250-240 Ma)
dominate in SN area, adjacent to the Song Ma
suture (Fig. 3). Earlier subduction-related
magmatism (~300-280 Ma) is also recognized
north and south of the study area (Kamvong et
al., 2014; Manaka et al.,, 2014; Hou et al.,
2019; Pham et al., 2000; Tran et al., 2022,
2024). This trend indicates progressive
migration of igneous activity from arc interior
to the suture, consistent with collision of the
Indochina and South China blocks at
~250-240 Ma (Lepvrier et al., 2004, 2008;
Tran et al., 2008; Cai and Zhang, 2009; Liu et
al., 2012; Faure et al., 2014; Pham et al.,
2017, 2019; Wang et al., 2016; Qian et al.,
2019; Doan et al., 2021; Ngo et al., 2024). We
therefore interpret the XK-MK and NP-KC
granitoids as pre-collisional (subduction-
related), and the 253—240 Ma SN intrusions as
collisional to post-collisional.

6.2. Geochemical and isotopic variations

Trace-element patterns of all studied
granitoids show reverse Nb, Ta, Ti, and Hf
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anomalies and positive Th, U, and Pb
anomalies (Figs. 9a-c), consistent with crustal
melting or subduction-related fluid influence
(McLennan, 2001; Rudnick and Gao, 2003;
Woodhead et al., 1998; Tatsumi and Eggins,
1995). Overall, XK-MK, NP-KC, and SN
granitoids display nearly identical trace-
element patterns, suggesting common source
characteristics.
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Figure 11. Plots of Rb versus Nb+Y (Pearce et al.,
1984; Pearce, 1996) for the SN, NP-KC, and XK-
MK magmatic rocks in the TSFB. Redrawn after

Ngo et al. (2025). All the granitoids fall in the
post-collision field rather than spreading to A, I-,
or S-types

Tectonic discrimination based on Y-Nb-Rb
(Pearce, 1996; Pearce et al., 1984; Ngo et al.,
2025) groups all samples in the post-collision
field (Fig. 11). Subtle regional differences
exist. Many XK-MK granitoids plot as A-
type. NP-KC granitoids fall between I- and S-
type with moderate peraluminosity. SN
Triassic granitoids are dominantly
peraluminous S-type (Fig. 9a-b). This is
unlike the East Junggar orogen, where A-type
magmas postdate calc-alkaline intrusions
(Huang et al., 2023a). The oldest XK-MK
granitoids (ca. 255 Ma) already show A-type
affinities. This suggests they were generated
from sources other than remelting of calc-
alkaline rocks. Ce/Pb ratios and absolute Ce
contents place most samples between upper
continental crust and arc magma fields
(Fig. 12). This suggests possible interactions
between the sources (Woodhead et al., 1998).
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Figure 12. Correlation between Ce (ppm) and
Ce/Pb differentiating fields of mantle and crust-
derived and arc-related magmatic rocks. Data for

the Upper Continental crust are from Rudnick and
Gao (2003), arc magmas are from Woodhead et al.
(1998)

Sr-Nd isotopes further highlight this trend.
Most granitoids are enriched, except for two
older Muang Khoun samples (270-271 Ma)
with relatively depleted signatures, suggesting
mantle input. XK-MK granites have *’Sr/*’Sr,
from 0.704 to 0.723 and eNd, ranging between
-1.5 and -9, more depleted than NP-KC biotite
and  two-mica  granites  (0.712-0.729;
eNdi = -7.4 to -9). The SN granitoids are the
most enriched, with ¥Sr/**Sr; ratios ranging
between 0.708 and 0.775 and eNd; from -8 to
to -14 (Fig. 10).

The isotopically most depleted sample is a
XK-MK gabbro-diorite *’Sr/**Sr, of 0.7042,
and eNd; of -1.45, Tpy ranging between 1.0
and 1.1 Ga. The most enriched is a SN biotite
granite *’Sr/*Sr, of 0.775 and eNd, of -13.8.
For example, a XK biotite granite (LAO-2,
254 Ma) yields Nd Tpy = 1.6-1.7 Ga and
zircon Hf Tpy = 1.3-1.7 Ga. The SN biotite-
hornblende granites (251-246 Ma) yield eNdi
= -9 to -11 and Nd/Hf Tpy = 1.5-1.8 Ga.
Except for the MK outliers, most samples plot
in the enriched upper continental crust field
(McDermott and Hawkesworth, 1990; White
etal., 2010; Desem et al., 2025).

6.3. Petrogenesis of granitoids in the TSFB

Previous studies showed that granitoids in
the TSFB resulted either by (1) mixing of

mantle magmas with crustal rocks (Hou et al.,
2019), or (2) partial melts of crustal rocks
(Qian et al., 2019). Our data support both
processes. The relatively depleted gabbro-
diorite and granodiorite found in the
subduction-related XK-MK batholith point to
a mantle contribution. These depleted magmas
suggest the existence of a mafic endmember
even more primitive than the gabbro-diorite
itself. In a binary mixing system, the two
endmembers must plot beyond the values of
their mixing products (Carlson and Irving,
1994). Thus, the isotopic arrays for individual
magma batches in XK-MK, NP-KC, and SN
(Fig. 10) likely reflect different proportions
and degrees of heterogeneity in their mantle
and crustal endmembers.

For the XK-MK and NP-KC granitoids,
mixing between a relatively mafic melt (with
7S1/*Sr =~ 0.7045 and eNd ~ +3) and a crustal
melt (*’St/**Sr = 0.730 and eNd ~ —9) could
explain the observed isotopic characteristics.
In addition, the reverse correlations of SiO-
versus CaO, ALl:Os, Fe:0s, and MgO (Fig. 6)
suggest fractionation of plagioclase feldspar,
pyroxene, biotite, and amphibole, along with
crustal material assimilation. The low-SiOs,
low-""Sr/**Sr  gabbro-diorite from MK (e.g.,
LP-50-1) likely represents one mantle-derived
endmember.

In contrast, the SN granitoids show no
clear correlation among major oxides and
display high *’Sr/*Sr ratios and low eNd
values. These features suggest a dominant
crustal melting origin, with little to no mantle
input (Fig. 10).

Zircon U-Pb ages further constrain these
processes. The XK-MK granitoids (271-254
Ma) largely overlap with those of NP-KC
(260-254 Ma), both of which were emplaced
relatively far from the Song Ma Suture. Their
timing coincides with ongoing subduction of
Paleotethys under the Indochina between
~280 and 250 Ma (Lan et al., 2000; Lepvrier
et al., 2008; Tran et al., 2008). Other studies
propose more detailed tectono-magmatic
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stages: subduction (280-245 Ma), syn-
collision (245-230 Ma), and post-collision
(230-200 Ma) (Liu et al., 2012; Qian et al.,
2019; Hou et al., 2019; Luong et al., 2024).
Accordingly, the SN granitoids of 246—
227 Ma fall into the syn- to post-collisional
stages (Tran et al., 2008; Liu et al., 2012).

6.4. Geological implications

Based on the granitoids’ geochronologic,
geochemical, and isotopic variations from this
study, together with previous work, the
tectonic evolution of the TSFB may be
outlined as follows:

(a) Pre-collision (subduction) stage

Southward subduction of the Paleotethys
under the Indochina Block began at
~306-304 Ma (Kamvong et al., 2014) and
lasted until ~250 Ma. Evidence for this comes
from Permian—Triassic igneous rocks in
north-central Vietnam (Tran et al., 2008; Liu
et al.,, 2012) and northern Laos (Qian et al.,
2019). The granitoids in the XK-MK and
NP-KC areas, dated between ~270 and
250 Ma, are consistent with this stage. Their
arc-like geochemistry and isotope
characteristics may be explained by the
mixing of mantle mafic magmas with crustal
melts. The crustal contributions likely
originated from the melting of both ancient
(1.6—1.9 Ga) and younger (~1 Ga) basement
rocks, triggered by the underplating of mafic
magmas (e.g., Gao et al., 2014).

(b) Syn-collision stage

Most researchers agree that a collision
between the South China and Indochina
blocks occurred between 250 and 243 Ma
(Lepvrier et al., 2004, 2008; Tran et al., 2008;
Cai and Zhang, 2009; Liu et al., 2012; Faure
et al., 2014, 2018; Pham et al., 2017, 2019;
Pham et al., 2023; Wang et al., 2016; Qian et
al., 2019). In the SN area, zircon U-Pb ages of
felsic magmas range from 253 to 240 Ma,
matching this timeframe. Numerical models
(Magni et al, 2012) indicate that once
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continental  collision = commences, the
subducting slab stalls and rollback occurs,
thereby shifting magmatism closer to the
trench. A similar process was proposed for
syn-collision granites in the Tanggula
batholith of northern Qiantang (Song et al.,
2022). In the TSB, slab rollback could explain
why felsic magmatism migrated from inland
areas (XK-MK, NP-KC) toward the suture-
proximal SN area (e.g., Huang et al., 2023b).
The incorporation of 1.9 Ga or older crustal
material into the 250-240 Ma SN granites
suggest input from the ancient South China
margin (Lan et al., 2000; Tran et al., 2024).

(c) Post-collision stage

Although not the focus of this study, post-
collisional granitoids (dating back to
235-200 Ma) are recognized across the TSFB
(Wang et al., 2016; Qian et al., 2019). For
example, diorite and biotite-hornblende
granites dated at 230-227 Ma occur in the
Song Ma area, just across the suture from the
SN batholith (Li et al.,, 2021). These may
represent a continuation of post-collision
magmatism in the region (Tran et al., 2022;
Luong et al., 2024) (Fig. 1).

7. Conclusions

From zircon U-Pb isotopic ages, magma
geochemistry, and Sr-Nd isotopic data of
Permian-Triassic granitoids in northern Laos
and western Vietnam, the following
conclusions may be drawn:

(1) The granitoids in the Sam Neua (SN),
Nam Phao-Kim Cuong (NP-KC), and Xieng
Khuang-Muong Khoun (XK-MK) areas show
arc-related geochemical signatures.

(2) Subduction-related magmatism
occurred between ~280-250 Ma in the NP-
KC and XK-MK areas. In contrast,
magmatism in the SN area, adjacent to the
Song Ma Suture zone, took place between 250
and 240 Ma, coinciding with the timing of
continental collision between the Indochina
and South China blocks.
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(3) Sr-Nd isotopic compositions indicate
that magmas formed through mixing of
mantle mafic components with ancient crustal
rocks’ melts via assimilation and fractional
crystallization. The NP-KC and XK-MK
magmas reflect inputs from 1.1-1.2 Ga and
1.6-1.7 Ga crustal sources, whereas the SN
felsic magmas were generated mainly from
older 1.9-2.2 Ga crustal materials.

(4) The shift of younger magmatism
toward the suture zone is best explained by
slab  rollback  during collision. The
involvement of 1.9-2.2 Ga components in the
SN magmas likely records the incorporation
of ancient crust from the subducted South
China margin.
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