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ABSTRACT

Over the past few decades, urban expansion has accelerated worldwide. This process can increase future flood
risks due to local changes in hydrological conditions and the increased exposure and vulnerability of communities in
flood-prone areas. Therefore, assessing the impact of urban expansion on flood susceptibility is an important task that
can support local authorities in urban planning and in mitigating flood impacts. The objective of this study was to
assess the impact of urban expansion on flood susceptibility in Hanoi using machine learning models: Deep Neural
Networks (DNN), Adaptive Boosting (ADB), Extreme Gradient Boosting (XGB), and Random Forest (RF). A total
of 1058 flood points and 14 conditioning factors corresponding to 2014 and 2024 were used as input to the models.
Statistical indices, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Area Under the Curve
(AUC), and Coefficient of Determination (R?) were used to evaluate the performance of the proposed model. The
results showed that the DNN model achieved the highest performance in assessing the impact of urban expansion on
flood susceptibility (AUC=0.92), followed by XGB (0.91), ADB (0.86), and RF (0.82). During 2014-2024, urban
expansion combined with the impacts of climate change has significantly increased the areas susceptible to flooding.
In Hanoi, areas in the "high" and "very high" flood-susceptibility categories have been expanding continuously,
accounting for about 25% of the total study area.

In contrast, the "medium" group has a slight decreasing trend, while the "low" and "very low" areas have
narrowed. This shows that urban expansion is increasing the area prone to flooding. The results of this study provide
a solid scientific basis, supporting planners and policymakers in identifying limitations in current flood risk
adaptation measures and in developing more appropriate spatial and temporal strategies to minimize flood impacts.
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1. Introduction on the environment, economy, and quality of
life (Bhunia et al., 2025). This process occurs
both horizontally and vertically, leading to
vegetation loss and a substantial increase in
impervious surface areas. According to the
*Corresponding author, Email: nguyenhuuduy@hus.edu.vn World Bank (2021), between 2000 and 2020,

Urban expansion is closely associated with
population growth, economic development,
and urbanization, exerting significant impacts
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the land area of suburban and inner cities
worldwide increased by approximately
930,000 km*> (Nguyen et al., 2022). Many
large cities in the world clearly show this
trend. For example, Karachi expanded from
62.27 km? in 1940 to 89.24 km? in 1980; Paris
doubled its inner-city area to 27,000 ha within
two decades; New York had 12.3 million
inhabitants in 1950; Tokyo is currently the
largest metropolis, with over 34 million
residents (Baig et al., 2024; Taubenbdck et al.,
2019). It is projected that by 2050, nearly two-
thirds of the global population will reside in
urban areas, with Africa experiencing the
fastest urbanization rate (20%), followed by
Asia and Oceania (26%) (Kundu and Pandey,
2020). The world population is expected to
reach 9.1 billion by mid-century (Estoque and
Murayama, 2017; Kundu and Pandey, 2020).
Numerous studies have demonstrated that
rapid urban expansion significantly increases
both the frequency and intensity of natural
hazards, particularly floods (Giineralp et al.,
2015). The expansion of impervious surfaces
combined with rising population density
strongly alters surface runoff processes and
flood dynamics (Luu et al., 2022; Lan and
Tien, 2009; Tien et al., 2016). Urban
development along riverbanks, often coupled
with weak land-use management, reduces
permeable surfaces and amplifies surface
runoff, thereby increasing flood risk.
Moreover, rapid urbanization is often
associated with inadequate drainage systems,
exacerbating flooding during the rainy season.
These processes not only intensify flood risk
but also interact with environmental factors,
including climate change (Das and Sahoo,
2025). Therefore, assessing the relationship
expansion flood
susceptibility is essential to support the
development of effective planning strategies.

between urban and
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In recent years, machine learning models
have been highly effective at analysing the
nonlinear relationships between flood-prone
areas and the combined impacts of urban
expansion, land-use change, and hydrological
factors (Viet et al.,, 2025). Some famous
models, such as SVMs, are applied to
classification, regression, and anomaly
detection; meanwhile, RF works by having
each decision tree predict the target variable,
then aggregating these predictions to form a
more powerful model; feedforward neural
networks (FNNs) are capable of handling
complex, nonlinear patterns from raw data.
However, machine learning models require
large data sets and are susceptible to noise,
making them difficult to apply in areas with

incomplete data, leading to significant
performance degradation. In addition, these
models have limitations in quantifying

performance: floods are often represented as
discrete  variables  (yes/no), = whereas
evaluation indicators such as accuracy or
RMSE depend on the continuity of the output
(Mosavi et al., 2018). Furthermore, each
geographic area has distinct natural and
socioeconomic characteristics, so it is
necessary to develop and validate machine
learning models tailored to specific areas. In
the context of increasing urban expansion,
there is an urgent need for powerful tools that
can handle multidimensional, nonlinear data
to assess the impact of this expansion on the
likelihood of flooding.

Although the number of studies assessing
flood risk in Hanoi has increased considerably
in recent years, very few have thoroughly
analyzed the relationship between urban
growth and flood susceptibility
advanced methods, such as machine learning
(Van Pham et al, 2025). Many previous
studies  have  assessed  flood  risks

using
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independently of urban dynamics or have
been limited to analyses based solely on
condition land-use conditions (Madhuri et al.,
2021). However, studies have
highlighted that assessing the impact of urban
growth on flood susceptibility is crucial for
supporting policymakers and planners in
developing sustainable and resilient land-use
strategies (Nguyen et al., 2024a).

We selected the machine learning models
Adaptive Boosting (ADB), Random Forest
(RF), XGBoost (XGB), and Deep Neural
Networks (DNN) for their ability to exploit
the complex, nonlinear relationships between
human-natural factors and flood phenomena.
Many previous studies have demonstrated that
integrating multisource remote sensing data,

numerous

including environmental and socioeconomic
indicators, into machine learning models can
significantly improve the accuracy. (Asfaw et
al., 2025) used 28 environmental and rainfall
factors extracted from remote sensing images
for the urban area of Addis Ababa as input to
the Random Forest model, and the results
showed that adding urban infrastructure
features significantly improved the accuracy
of flood forecasting. Based on this, the
objective of this study is to apply machine
learning models - specifically ADB, XGB,
RF, and DNN - to assess the impact of urban
expansion on flood susceptibility in Hanoi.
The difference from previous studies is that
this study directly considers the spatial-
temporal impact of urban expansion on flood
susceptibility, rather than analysing the flood
phenomenon solely under the influence of
terrain or climate hydrology. The research
results can help policymakers and planners
develop  effective urban  development
strategies, helping minimize the impact of
floods.

2. Study area and material
2.1. Study Area

The study area is located between 20°53’—
21°23°N, 105°44°-106°02°E (Fig. 1). The
terrain is mainly low mountains, hills, and
plains, gradually decreasing in altitude from
northwest to southeast, following the flow of
the Red River; mountainous
concentrated in the region's northern and

arcas arc

western parts. The average altitude ranges
from 5 to 20 m above sea level. The city has a
dense river network, comprising the Red, To
Lich, Da, and Nhue rivers, as well as other
smaller river systems. Hanoi is located in the
tropical monsoon climate zone, with high
temperatures from April to June; the rainy
season lasts from May to October, and the dry
season from November to April. The average
annual rainfall is approximately 1,760 mm. In
2024 alone, September totaled
697 mm, 525 mm above the same period in

rainfall

2023, causing severe flooding in many low-
lying areas.

In the period 2020-2024,
population grew from 8.25 million to
8.72 million, with an average density of
2,595 people/km? In 2024, the immigration
rate reached 5.9, while the emigration rate

Hanoi's

was only 4.5, reflecting the attraction of
Hanoi for workers from the provinces,
especially the Northern region. This growth
led to high housing demand, driving the rapid
conversion of agricultural land to urban and
industrial uses. It is expected that by 2030,
Hanoi's population will reach 10.5 million,
rising to 13 million by 2050, with a scheduled
urbanization rate of 80-85%. However, the
current urban drainage system has not met
demand, increasing the risk of flooding during
the rainy season.
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In 2024, Typhoon Yagi brought heavy
rains, raising the flood level on the Red River
in Hanoi to 10.76 m, exceeding the second
alarm level by 0.26 m; on the Duong River in
Thuong Cat, it reached 10.11 m (0.11 m
above the second alarm level). 47 hectares of
rice and 26.5 hectares of vegetable crops were

submerged entirely; 6,144 hectares of rice, 15
hectares  of  vegetable  crops, and
approximately 2,500 trees were knocked
down; over 2 hectares of fruit trees were
damaged. Buildings were also affected,
including five households whose roofs were
blown off.
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Figure 1. Location of Ha Noi Capital
2.2. Material data, hydrological-hydraulic models, and

Flood Inventory and Conditioning Factors

Flood inventory maps play an important
role in machine learning applications, as they
reflect the relationship between past flood
events and their causes (Long et al., 2026).
Flood inventories are compiled from various
data sources, including field-measurement
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satellite images (Demissie et al., 2024). To
improve data quality, flood inventory in this
study was collected during a major flood
event that occurred from 8-13 September
2024, associated with Typhoon Yagi. This
Typhoon was selected because it represents a
severe large-scale flood affecting in Hanoi
City.
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To determine the flood zones associated
with Typhoon Yagi, this study used Sentinel-
1A imagery. More
Sentinel-1A
administrative territory of Hanoi was used to

precisely, a single

image covering the entire
ensure the spatial consistency of the flood
map. The Sentinel-1A image acquired on
September 12, 2024, was selected as the pre-
flood representing  the
conditions just before the flood peak, while
the image acquired on September 15, 2024,
was used as the post-flood image. The use of
SAR data enables reliable flood detection

under all weather conditions. Finally, the

image, surface

flood inventory was generated by comparing
the pre-flood and post-flood Sentinel-1A
images.

In total, 524 flood points were collected to
construct the flood susceptibility model for
Hanoi City. Furthermore, the model used in
this study is binary, therefore, non-flood
points also play an important role. Several
studies have shown that the number of flood
which
improves model performance. Thus, 524 non-

and non-flood points is similar,
flood points were collected in areas that had
never been affected by flooding. In total, 1058
flood and non-flood points were collected to
build the flood susceptibility model. This data
was divided into two parts: 70% for training
and 30% for testing.

The proper selection of conditioning
factors is indispensable for assessing the
reliability of the forecasting model. Selection
depends on data availability and the natural
and social characteristics of the study area. In
this study, 14 conditional factors were used:
aspect, elevation,

curvature, slope,

Normalised Difference Built-up Index
(NDBI), Normalised Difference Vegetation
Index (NDVI), Water Index (NDWI), and
Urban Index (UI), Impervious Built-up Index
(IBM), Normalized Difference Impervious
Surface Index (NDISI), Land Use/land cover
(LULC), Distance to river, Distance to road
density.  Aspect,
curvature, elevation, and slope were extracted

and Pumping station
from DEMs built based on topographic maps,
while the NDBI, NDVI, NDWI, and UI
for the period 2014-2024 were
calculated from Sentinel-2A satellite images.

indices

Elevation, aspect, curvature, and slope
were extracted from the DEM (constructed
from the 1:50,000 scale topographic map
available from the Ministry of Agriculture and
the Environment). Distance to river and
distance to road were calculated from the
1:50,000 scale topographic map using the
Euclidean Distance tool in ArcGIS 10.6.
NDBI, NDVI, IBM, NDISI, NDWI, and Ul
were extracted from the Sentinel-2A imagery
recorded on August 2, 2025, and July 1, 2014.
The detailed impacts of each conditioning
factor on flood susceptibility are presented in
Table 1A.

3. Methodology

In this study, the methodology used to
assess the effects of urban growth on floods
was divided into three main stages: (i) data
collection, (ii) construction of machine
learning model, and (iii) assessment of the
effects of flood

susceptibility. The details of the methodology

urban growth on

are presented in Fig. 2.
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Figure 2. The methodology used for this study

3.1. Adaptive Boosting

ADB is a machine learning algorithm
developed by and applied in many flood-
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combining multiple weak learners to form a
strong learner with greater forecasting
accuracy (Jahanbani et al., 2024). The core
mechanism of ADB is to assign higher
weights to training samples that were
incorrectly predicted in previous iterations,
thereby forcing the model to focus more on
difficult-to-classify cases (Liu et al., 2017).
Over many iterations, ADB builds a set of

submodels, each assigned a weight
proportional to its forecasting accuracy,
thereby  gradually  improving  overall

performance (Li, 2025).

The efficiency of ADB depends heavily on
hyperparameter tuning. The parameter
n_estimators determines the number of weak
models to be combined; a larger number can
improve accuracy but also increase
computational costs. The learning rate
parameter controls how much each weak
model contributes to the overall model, with
low values making the model learn slowly but
more consistently, while high values can
reduce generalization ability. The
base_estimator parameter specifies the type of
weak model used, from simple decision trees
to more complex models. Finally, the
algorithm parameter allows choosing between
SAMME (suitable for multiclass
classification) and SAMME.R (which uses
predicted probabilities, which is more
effective in many cases). With these features,
ADB has proven to be effective and flexible
in improving the accuracy of flood forecasting
and flood mapping.

3.2. Extreme Gradient Boosting

XGB is part of the Gradient Boosting
family of algorithms, designed to optimise
performance, speed, and scalability. It was
developed by the Distributed Machine
Learning Community (DMLC) (Ma et al.,
2021). Unlike traditional machine learning
methods, it operates on an iterative principle,
in which weak models (weak learners) are

continuously added and refined to overcome
the errors of previous models, thus creating a
strong model (strong learner) with high
accuracy (Ren et al.,, 2024). In particular,
XGB utilises both the first and second
derivatives of the loss function to determine
the optimal direction and level of adjustment
and integrates regularization techniques to
reduce model complexity and limit
overfitting, thereby improving the reliability
of flood forecasting (Linh et al., 2022).

The performance of XGB depends heavily
on hyperparameter tuning. The eta (learning
rate) parameter controls the influence of each
new tree added to the model; the max_depth
parameter specifies the maximum depth of the
decision tree, where a larger depth can help
the model learn better but also increases the
risk of overfitting. The subsample parameter
determines the proportion of randomly
selected data samples used to train each tree,
while  colsample bytree  controls  the
proportion of features sampled for each tree,
thereby increasing diversity and reducing
correlation between trees. In addition, a set of
parameters related to the learning task also
plays an important role, including objective
(determining the problem type, such as binary
classification, multiclass, or regression) and
eval metric (a metric for evaluating model
performance, such as AUC, RMSE, or
logloss). The appropriate selection and tuning
of these parameters is key to XGB's high
performance in flood risk forecasting and
analysis.

3.3. Random Forest

The RF algorithm works on the principle
of bagging, in which multiple decision trees
are built independently and in parallel, and the
results are then combined through a voting
mechanism (for classification) or averaging
(for regression) (Wang et al, 2015). To
increase diversity among trees, RF uses
random subsets of data and features during
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training. The model's performance in flood
forecasting depends heavily on the selection
and tuning of hyperparameters (Chen et al.,
2020). The parameter n_estimators determines
the number of trees in the forest, with higher
values generally improving accuracy but
increasing ~ computational ~ costs.  The
max_depth parameter controls the maximum
depth of each tree: too small a depth can lead
to underfitting, while too large a depth can
easily lead to overfitting. The max features
parameter specifies the number of features
considered at each split; smaller values
increase diversity among trees and reduce the
risk of overfitting.  Additionally, the
min_samples split and min_samples leaf
parameters determine the minimum node split
and the minimum leaf size, thereby limiting
the complexity of the tree. Finally, the
bootstrap parameter enables random sampling
with replacement, which contributes to
maintaining the randomness and stability of
the model.

3.4. Deep Neural Networks

DNNs exploit multilayer neural networks
to analyze complex datasets from raw data,
thereby significantly improving the accuracy
of flood forecasting and risk assessment. This
method is  especially  suitable  for
multidimensional ~and  nonlinear  data
processing problems, such as satellite image
analysis for flood identification, time-series-
based flood forecasting, or modeling the
impact of environmental variables (Anbarasan
et al., 2020). Input data often includes satellite
images, digital elevation models (DEMs), and
information about past flood events. After
collection and preprocessing, DNNs can be
used to identify flood areas from remote
sensing images, while sequential regression
architectures such as RNN or LSTM support
flood forecasting based on rainfall time series.
Image segmentation models such as U-Net or
SegNet are also used to identify detailed flood
boundaries, thereby improving the accuracy of
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risk mapping (Panahi et al., 2021). During
training, DNNs rely on the backpropagation
mechanism to optimise and reduce prediction
errors. Unlike tree-based models such as
XGB, the performance of DNNs depends
heavily on the network architecture and
training process. Hyperparameters play an
important role, such as the learning rate,
which adjusts the speed at which the weights
are updated (too high can cause the model not
to converge, while too low slows down the
training process) (Hawamdeh et al., 2025).
The number of layers and neurons determines
the network's performance, but an overly
complex architecture can lead to overfitting,
especially with limited flood data (Shao et al.,
2024). Nonlinear activation functions, such as
ReLU and Sigmoid, enable the model to learn
complex relationships in weather and terrain
data. Optimisation algorithms such as Adam
or SGD adjust the approach to minimising the
loss function, while batch size directly affects
the stability of the training process.
Additionally, regularisation techniques such
as dropout and batch normalisation help
reduce overfitting by randomly inactivating
neurones or normalizing inputs across layers,
thereby improving the model's generalisation
ability (Johri et al., 2024).

4. Results
4.1. Change in land use

Table 2A and Figure 3 show the changes in
land use in Hanoi during the period 2010-
2024. There was a significant change in land-
use structure, especially the rapid expansion
of urban areas. The forested area decreased
dramatically from 319.56 km? (9.56%) to
204.53 km? (6.12%), reflecting the levels of
urbanization and conversion to other land
uses. The water surface area also decreased
rapidly, from 285.77 km? (8.55%) to
187.38 km? (5.60%), largely due to the filling
of lakes and ponds for urban development.
Agricultural land, although still representing a
large proportion of the study area, also
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decreased sharply, from 2137.99 km?®
(63.96%) to 1902.20 km? (56.90%)), as a direct
result of urbanization. Barren land decreased
slightly from 48.24 km? (1.44%) to 42.18 km?
(1.26%), while aquaculture increased
dramatically, from 173.53 km? (5.19%) to
288.03 km? (8.62%), and grassland more than

LULC
Bl Aquaculture
I Barren

Cropland
B Forest

B Grass

doubled, from 122.64 km?® (3.67%) to
300.32 km? (8.98%), reflecting the trend of
and food
demand. Urban land increased rapidly at a rate
of 47.6%, expanding 12.52%  from
255.63 km? in 2010 to 418.65 km? in 2024.

expanding livestock farming

Bl Urban
Water

0 5 10 20 30 40

Figure 3. Land use/land cover in Hanoi in 2014 and 2024

4.2. Conditioning factor selection

Evaluating the importance of conditioning
factors is an essential step when using
machine learning to build flood susceptibility
maps, because it eliminates unnecessary or
unimportant factors that affect the accuracy of
prediction models. We used RF, a popular
feature selection method, to assess the
importance of the factors. The results showed
that UI, elevation, NDBI, NDISI, NDWI, and
distance to river are the most important
factors for flooding in Hanoi; the UI, NDBI,
and NDISI indices directly influence the
waterproof capacity. In recent years, the city's
urban growth has accelerated, leading to
increased concrete, asphalt, and roofing.

Areas with high Ul, NDBI, or NDISI values
represent regions of concrete expansion.
These surfaces prevent rainwater from
seeping into the soil, thereby increasing
surface runoff. This causes water to stagnate
or flow rapidly over the ground during rain.
Elevation determines the capacity for
rainwater accumulation. Specifically, low-
lying areas near rivers are more susceptible to
flooding. Hanoi is located in the Red River
Delta. Most of the city is less than 20 m above
sea level; therefore, it is more susceptible to
flooding during heavy rains. Several studies
have shown that areas below 8 m above sea
level have a very high risk of flooding, while
areas above 31 m have a lower risk.
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NDWI was ranked fifth in importance
because a higher NDWI value reflects a high
volume of surface water or highly saturated
soil. An increase in NDWI indicates that the
soil contains more water, which predicts an
elevated risk of flooding during heavy
rainfall. Although distance to the river is
considered an important factor, its influence
can be masked by topographic and land-use
factors, which exert greater control over
surface runoff and water accumulation in the
urban area. Distance to the river is the sixth
most important factor because areas near
rivers are always directly affected by rising
water levels. In Hanoi, history shows that
when the Bui and Tich rivers rise, the areas
along them are affected by flooding. It should
be noted that the models used in this study are
statistical models; therefore, the importance of
the factors depends strongly on the statistical
relationships between the conditioning factors
and the flood points.

LULC, NDVI, distance to road, IBM, and
pumping station density factors have an
average influence on the probability of
flooding in Ha Noi City. In Ha Noi City,
urban growth leads to an increase in the area
of construction, such as buildings and roads,
and thus a reduction in the area of vegetation.
This increases impervious surfaces and the
probability of flooding. For example, the
Hong Mai and Hai Ba Trung regions are
mainly built-up areas with few trees.
Therefore, these areas are often affected by
flooding during heavy rains. In suburban areas
such as Thanh Tri and Gia Lam, many
agricultural areas still contribute to relatively
efficient water drainage. Areas with high
NDVI often reduce surface runoff due to their
water-retention capacity and reduced water
velocity. In Ha Noi, low NDVI is
concentrated in residential areas and the city
centre, while high NDVI is found in suburban
areas. For example, the Ha Dong and Thanh
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Tri areas (with high NDVI indices) are less
affected by flooding than urban areas such as
Hoang Mai and Long Bien. Road construction
increases impermeable surfaces and can
hinder water flow. The density of the pumping
station represents the number of water-
pumping facilities per unit area. In Ha Noi,
the high pumping station density allows rapid

water drainage, but its impact is only
moderate because, during heavy rains,
pumping capacity is limited. @ More

specifically, during heavy rains, the Thanh Tri
and Hoang Mai regions remain flooded, even
when the pumping station is operating at full
capacity. The factors slope, curvature, and
aspect are less influential on the probability of
flooding because Hanoi has a flat relief, so
their values are almost identical throughout
the territory. Therefore, they are not as
relevant (Figure 1A).

4.3. Model Performance and Comparison

Figure 2A presents the AUC value of all
the models proposed to evaluate the effects of
urban growth on flood susceptibility in Hanoi.
The results showed that all proposed models
performed well during both training and
validation. Among them, during training, the
XGB model performed best, with an AUC of
0.98, followed by DNN (0.97), RF (0.88), and
ADB (0.87). In the validation set, the DNN
model outperformed the other models, with an
AUC of 0.92, followed by XGB (0.91), ADB
(0.86), and RF (0.85).

This study also used RMSE, MAE, and R?
to evaluate model performance. In terms of
the training process, for XGB, the value of
RMSE (0.18) and MAE (0.14) was lower than
that of other models; therefore, its
performance was better than that of other
models, followed by DNN (RMSE = 0.22,
MAE = 0.17), RF (RMSE = 0.33 and
MAE = 0.25), and ADB (RMSE = 0.35 and
MAE = 0.25). In the validation process, the
RMSE and MAE values of the XGB model
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remained lower than those of other models
(RMSE = 0.26, MAE = 0.2), followed by
DNN (RMSE = 028, MAE = 0.21),
RF (RMSE = 0.36, MAE = 0.27), and ADB
(RMSE = 0.38, MAE = 0.29).

The R? value of the XGB model was

higher than that of other models in both the
training and validation processes (R? = 0.97
for the training process and R? = 0.88 for the
validation process), followed by DNN (R? =
0.93, R>=0.87), RF (R? = 0.85, R*=0.82), and
ADB (R?=0.84, R?=0.81) (Table 1).

Table 1. Performance of the models using RMSE, MAE, AUC, and R?

Training dataset Validation dataset
RMSE MAE AUC R2 RMSE MAE AUC R2
ADB 0.35 0.25 0.87 0.84 0.38 0.29 0.86 0.81
DNN 0.22 0.17 0.97 0.93 0.28 0.21 0.92 0.87
RF 0.33 0.25 0.88 0.85 0.36 0.27 0.85 0.82
XGB 0.18 0.14 0.98 0.97 0.26 0.2 0.91 0.88

4.4. Effect of Urban Expansion on flood
susceptibility

Figure 3 presents the flood susceptibility
map in Hanoi using XGB. While Fig. 3A
presents the flood susceptibility map produced
by DNN, RF, and ADB. The map shows that
the distribution of flood risk in Hanoi is
clearly differentiated in space and time. The
areas along the Red River, especially in the
south and southwest of the city, have a high to

Flood Susceptibility{,
N Very low \
B Low
[ 'Moderate
Bl High

very high flood risk. These low-lying areas
near the river are often directly affected by
flooding. In contrast, the urban centre is
located mainly in a medium- to high-risk
zone, reflecting high wurbanization and a
limited drainage network. The northern and
northwest areas have low to very low risk,
consistent with the characteristics of high
terrain and dense vegetation. The distribution
of flood susceptibility classes in Ha Noi City
for each model is presented in Table 3A.

B Very High 2014

05 10

Km 2024
20 30 40

Figure 3. Flood susceptibility in 2014 and 2024 by XGB in Hanoi city
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In general, between 2014 and 2024, and
2024, flood-prone areas have tended to
increase in several regions due to urban
growth. Several studies have highlighted that
increased precipitation and temperatures have
led to increased intensity and frequency of
flooding. Specifically in Hanoi, areas
classified as "high" and "very high" show an
increasing trend. These two categories
represent approximately 25% of the study area
and continue to expand. In contrast, the
"moderate" category has slightly decreased,
while areas classified as "low" and "very low"
tend to gradually diminish.

5. Discussions

Floods are dangerous natural hazards that
cause significant damage to people and
property and hinder a country’s development
(Alfieri et al., 2017). They have tended to
increase in both number and intensity in the
context of climate change and urban
expansion. As a result, many urban areas,
especially in developing countries, are
becoming increasingly vulnerable to flooding
(Onchi-Ramos et al., 2024). In that context,
assessing the impact of urban expansion on
flood susceptibility is important for
supporting policymakers in developing
effective adaptation strategies, reducing risk,
and promoting sustainable development
(Demissie et al., 2024). The objective of this
study was to assess the impact of urban
expansion on flood susceptibility using ADB,
RF, DNN, ADB machine learning models in
Hanoi, Vietnam. The results of this study
showed that wurban expansion leads to
significant changes in land use, increasing
impervious area and, consequently, the
probability of flooding. By accurately
identifying 14 key factors affecting the flood
process in Hanoi, this study helps clarify the
impact of wurban expansion on flood
vulnerability. This study has many similarities
with the results recorded of many other
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regions in the world. Since the Doi Moi
reforms in 1986, the urban land area in
Vietnam's delta regions has nearly doubled,
with the rate of expansion accelerating since
the 2000s. The pattern of urban expansion in
these cities, characterized by fringes and
leapfrog, is increasingly common, similar to
the trend observed in many global megacities.
This process disrupts natural flow and
contributes to increased flood risks, identical
to the expansion of Jakarta or Sao Paulo,
where rapid urbanization combined with
heavy rains led to severe floods. In Hanoi,
urban expansion has been considerable,
reflected in the conversion of agricultural land
to construction land and the formation of
high-density residential areas.

An increase in built-up land surface leads
to more impervious surfaces, reducing the role
of natural vegetation in regulating water flow.
This increases the study area's vulnerability to
flooding (Pham et al., 2015). Historically, the
Red River Delta has been highly vulnerable to
flooding due to alluvial deposition and low-
lying terrain (Luo et al., 2018). Since the
country's Doi Moi process in 1986, the pace
of urban expansion in Hanoi has accelerated,
driven by economic development and rural-
urban migration. Furthermore, the merger of
Ha Tay into Hanoi in 2008 not only expanded
administrative boundaries but also created
conditions for foreign investment, thereby
promoting economic growth and expanding
the capital's urban area (Smith and Scarpaci,
2000a). In addition, economic reforms,
especially the gradual reform of land-use
rights management and transfer mechanisms
and the emergence of the real estate market,
have made land an important resource for
speculation and capital accumulation. In that
context, the development of new urban areas
not only plays an essential role in promoting
economic growth and attracting participation
from local authorities, foreign investors, and
residents, but also contributes to rapid urban
expansion (Petrisor et al, 2020). This
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development process has led to a population
explosion: Hanoi's population increased from
6.9 million in 2010 to 8.7 million in 2024.
This explosion of population and urban space
expansion emphasises the direct impact of the
transition from a centrally planned economy
to a market economy, while opening up to
foreign  investment and  international
integration. However, this development leads
to increased impervious surfaces and the
breakdown of natural structures, thereby
increasing the likelihood of flooding.
Specifically, the results of the study show that
the area of areas at medium, high, and very
high risk of flooding increased from 2014 to
2024. This has been demonstrated in many
previous studies. In planning strategies, the
urbanization rate of Hanoi in 2030 is expected
to reach 65-75% (Van Pham et al., 2025). In
Hanoi, the urban development structure is
expected to be organised around five spaces,
five corridors, five dynamic axes, five
socioeconomic regions, and five urban areas.
These orientations are anticipated to strongly
influence land-use transformation, particularly
the conversion of agricultural land into urban
residential land. This trend is most evident in
suburban districts such as Pong Anh and Gia
Lam, where urbanisation is the primary driver
of development.

The application of machine learning
models is an effective way to improve
forecast accuracy and integrate diverse data
sources. Previous studies have confirmed that
machine learning models can significantly
improve the accuracy of flood risk maps and
play an important role in flood risk
management and mitigation. These models
exploit historical data, geospatial information,
and environmental factors to identify areas at
risk of flooding and support the development
of disaster response and preparedness
strategies. Incorporating geospatial datasets,
such as elevation and land cover, has been
shown to improve model accuracy, with many
studies reporting AUC values exceeding 0.80

(Al-Kindi and Alabri, 2024; Bui et al., 2023).
Several studies have also shown that machine
learning models play an important role in
flood assessment by simultaneously analysing
multiple factors affecting flood risk, using
algorithms such as k-nearest neighbours
(KNN), Decision Trees (DTs), and Support
Vector Machines (SVMs) to improve
prediction accuracy, optimise flood
management  strategies and  improve
understanding of risk mechanisms in urban
areas (Yuwono et al., 2024). Specifically, a
study in Jakarta applied support vector
regression (SVR), achieving an R? of 0.977
and an RMSE of 0.112, demonstrating the
potential of SVM for predicting flood levels
(Azi et al, 2024). SVM has also been
deployed in real-time flood warning systems,
helping to provide immediate responses in
vulnerable areas. In Malaysia, SVMs are
highly effective for flood prediction using 29
months of rainfall and river water level data
(Azi et al, 2024), with advantages in
classifying flood and non-flood areas,
handling complex datasets, and providing
reliable results (Mosavi et al., 2018). This
evidence confirms that machine learning
algorithms, especially variants of SVM, are
powerful tools for predicting river water
levels and flood occurrence, thereby helping
minimise the socioeconomic impact of natural
disasters. In addition to SVM, other
algorithms such as RF and Gradient Boosting
have been applied to analyze hydrological
variables (rainfall, streamflow, and flood
frequency) and have performed well in flood
forecasting, including in Jeddah, Saudi Arabia
(Al-Areeq et al., 2022). In addition, ADB has
demonstrated the ability to automatically map
flood inundation from remote sensing data,
such as MODIS imagery, without manual
intervention, enabling rapid response in
emergencies (Ahamed and Bolten, 2017).
Later studies have further improved this
method by combining AdaBoost (ADB) with
spatial context learning to extract flood maps
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from optical satellite images (Liu et al., 2017),
or by integrating ADB with DTs to analyse
factors such as drainage density and rainfall to
build reliable flood inventory maps (Coltin et
al., 2016). In addition to traditional models,
deep learning (DL) models have been widely
applied in recent years to assess the impact of
land-use change, in general, and urban
expansion, in particular, on areas prone to
flooding. Neural network architectures have
demonstrated  superior  capabilities  for
processing satellite imagery to detect and
model nonlinear relationships in floods.
Additionally, sequential neural regression
models such as Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU)
networks have proven effective in processing
time-series patterns, such as rainfall and
streamflow, thereby improving the reliability
of flood forecasting (Liu et al., 2023).

Although the study successfully assessed
the impact of urban expansion on flood
susceptibility, it still had limitations related to
data use. The study did not consider the
impact of urban shape on flood susceptibility.
Although the study used some urban
indicators directly related to impervious
surfaces and built-up land area, vertical
morphological factors that can affect surface
runoff, such as bridge characteristics and
building shapes, were not integrated. Future
studies will incorporate these factors better to
assess the impact of urban expansion on
floods. In addition, considering the effect of
urban drainage systems is quite simple when
only indicators related to pumping station
density are used, rather than indicators that
fully reflect the drainage system's functions,
such as pipe density.

6. Conclusions

Flooding regularly impacts people and the
economy in Vietnam, and flood risk tends to
increase with urban growth. Therefore,
assessing the effects of this relationship is
essential to support decision-makers in
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sustainable land use planning. The objective
of this study was to assess the effects of urban
growth on flood susceptibility using machine
learning, namely the DNN, ADB, RF, and
XGB models, in the city of Hanoi. The
conclusion was as follows:

(1) The models proposed in this study can
be generated for application in other parts of
in Vietnam and the wider world. ii) Among
the proposed models, the DNN model
performed better than the others, with an AUC
value of 0.92, followed by XGB (AUC=0.91),
ADB (AUC=0.86), and RF (AUC=0.82).
These results highlight the superiority of the
DNN and recommend its use for constructing
flood-susceptibility maps and assessing the
effects of urban growth on flood vulnerability.

(i1) Urban growth has a significant effect
on flood susceptibility in Hanoi. More
specifically, the very high and high flood
susceptibility areas are increasing rapidly.
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APPENDIX

Table 1A. Contribution to flood susceptibility

Conditioning factors

Contribution to flood susceptibility

[Elevation

Elevation is a fundamental factor in assessing flood risk, as it governs the storage and
distribution of runoff. Water from high-altitude areas (hills and mountains) often flows|
into low-lying areas, making them more susceptible to flooding (Albano and|
IAdamowski, 2025).

Slope

Slope is also a key factor as it directly affects the velocity, direction, and volume of|
runoff. Areas with steep slopes generate fast, strong flows, increasing the risk of flooding]
in lower areas, while flat or gentle areas are prone to water stagnation during prolonged|
heavy rains (Damayanti et al., 2024).

Curvature, Aspect

Topographic curvature reflects the surface's convexity, concavity, and flatness, thereby]
affecting storage capacity. Concave or gently sloping areas near converging streams,
where drainage density is high, are often more susceptible to flooding than convex or flat]
areas (Al-Juaidi, 2023).

INDVI, NDWI

INDVI reflects vegetation density and health, which regulate surface runoff: high NDV]|
values indicate better infiltration and reduced flood risk, while low NDVI values indicate]
reduced vegetation cover and increased runoff (Khosravi et al., 2019). NDWI represents|
surface water content; high values are generally associated with low-lying areas prone to
waterlogging and a high risk of flooding, while low values reflect cooler conditions and a|
lower risk of flooding (Ahmed and Akter, 2017).

INDBI, IBM, NDISI and UI

The NDBI, IBM, NDISI and UI indices represent the degree of urbanisation and the]
proportion of impervious surfaces. High values reflect increased construction and grey
infrastructure, which increases the risk of runoff and flooding. On the contrary, low|
values indicate the presence of many permeable surfaces, which help reduce flood risk
(Hoang and Liou, 2024; Rahmati et al., 2020).

IDistance from river

Distance from river plays a key role in assessing the effects of urban growth on flood|
susceptibility. Areas located close proximity to rivers are more likely to be affected by
flooding due to direct exposure to overflows, while this risk gradually decreases as
distance from the river increases (Liuzzo et al., 2019).

Distance from road and
IPumping station density

Distance from road plays an important role in the effects of urban growth on flood|
susceptibility, as it directly influences runoff and can create areas of water accumulation.
This factor is also associated with high urban density, leading to increased impervious
surfaces and, consequently, greater flood risk (Versini et al., 2010). On the contrary, the
density of the pumping station helps reduce flood vulnerability, as higher density allows
for faster water evacuation; however, its effectiveness is highly dependent on the capacity|
and distribution of the pumping system (Wu et al., 2023).

Land use (LULC)

Land use (LULC) plays an important role in determining areas highly susceptible to
flooding, as changes in land use directly influence surface impermeability and,

consequently, soil infiltration capacity (Nguyen et al., 2024a).
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Table 2A. Land use/land cover type in Hanoi in Table 34. The distribution of flood susceptibility
2014 and 2024 class in Ha Noi city
Land use | Area (km?) % Area (km?) % Very Low Moderate, High Very
type in 2014 in 2024 low | (km?) | (km* | (km? | high
Aquaculture| 173.530718| 5.19 [288.03444| 8.62 (km?) (km?)
Forest 319.55843 9.56 204.53017 6.12 ADB|2014|439.9218| 1442.08 [ 1008.671 [236.8917|216.1845
Water |285.765851 855 |187.379918] 5.60 2024{337.7367|1234.267| 1336.14 [176.7978]274.7871
Cropland [2137.985683] 63.96 [1902.20434] 56.90 XGB|2014453.9843|825.5007| 785.9205 (678.0762(600.2667|
Barren 48.242896 1.44 42.183122 1.26 2024|768.6108(571.4208| 620.1423 [756.3987/643.1553
Urban |255.625298| 7.65 [418.651382] 12.52 DNN[2014[418.2588683.9658| 759.3102 [692.9082(789.3054]
Grass 122.643023| 3.67 (300318475 8.98 2024(475.5591(675.0729|717.9417 [794.3094(696.8457|
RF [2014(912.7368| 738.072 |416.4012 [320.1966(956.3418
2024{337.7367|1234.267| 1336.14 [176.7978]274.7871
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Figure 14. Importance of factors, using RF
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Figure 24. AUC value for training and validation processus for ADB, DNN, RF, and XGB
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Figure 34. Flood susceptibility in 2014 and 2024 by ADB, RF, XGB, and DNN in Hanoi city
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