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ABSTRACT

This study highlights a novel ensemble approach integrating the JCHAIDStar model with various ensemble
techniques namely Dagging (Dag), Bagging (Bag), Decorate (Deco), and Cascade Generalization (CG) for multi-
hazard susceptibility assessment and mapping of landslides and flash floods (LS-FF) in Ha Giang province, Vietnam.
A total of 963 landslides and 106 flash flood events were used for model development and validation. Flash floods
rapidly saturate soil, reducing its cohesion and destabilizing slopes, which leads to landslides. Conversely, landslides
may block rivers, creating natural dams that fail abruptly, resulting in flash floods. In this study, a comprehensive
dataset comprising 963 landslides, 106 flash floods, and thirteen conditioning factors related to topography,
hydrology, geology, and meteorology was utilized. This dataset was split into training (70%) and test (30%) sets for
model development and validation, with AUC used to evaluate performance; the Bag-JCHAIDStar model achieved
the highest predictive accuracy (AUC = 0.985 for training and 0.951 for testing). The results demonstrated that
ensemble-based JCHAIDStar models outperformed single benchmark models (LR and SVM). The generated
susceptibility maps provided reliable spatial information for land-use planning and disaster risk mitigation.

Keywords: Landslides, flash floods, multi hazards, machine learning, Bagging, JCHAIDStar, Vietnam.

1. Introduction

Flash floods and landslides (LS-FF) are
among the most destructive natural hazards
worldwide, causing extensive damage to
infrastructure, the environment, and human
lives (Pham et al., 2021). These events are

*Corresponding author, Email: datvucao97@gmail.com

often triggered by intense rainfall, rapid
snowmelt, or seismic activity, and their
occurrence is exacerbated by climate change
and anthropogenic activities such as
deforestation and urbanization. In Vietnam,
the frequency and severity of LS-FF have
significantly increased in recent decades,

particularly in mountainous regions such as
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the northern provinces and the Central
Highlands (Pham et al., 2020). These hazards
are closely interrelated, often occurring
simultaneously or in sequence due to shared
triggering factors, particularly intense or
prolonged rainfall (Deijns et al, 2022).
Understanding the mechanisms linking flash
floods and landslides is crucial for developing
effective  risk  management  strategies.
Therefore, practical multi-hazard
susceptibility assessment is an indispensable
task for land-use planning, infrastructure
development, and early warning systems. By
identifying high-susceptibility areas, decision-
makers can implement preventive measures
and allocate resources efficiently.

Various traditional methods, such as the
analytical hierarchy process, have been used
for multi-hazard susceptibility assessment
(Mfondoum et al., 2023). These approaches
utilize historical data and domain knowledge
to analyze spatial correlations between hazard
occurrences and conditioning factors (Sarker
and Adnan, 2024). While these methods
provide valuable insights, their performance is
often constrained by assumptions of linearity
and independence among variables, as well as
limited adaptability to complex datasets. As a
result, their predictive capabilities are
sometimes insufficient for addressing the
multifaceted nature of LS-FF.

In recent years, advancements in machine
learning (ML) have revolutionized hazard
susceptibility assessment (Duc et al., 2025;
Luu et al., 2022; Nguyen et al., 2023c). The
ability of ML to learn patterns from historical
data, generalize to unseen scenarios, and
continuously improve with additional data
makes it a dynamic, adaptive framework for
hazard assessment. Popular techniques such as
decision trees (Youssef et al., 2022), random
forests (RF) (Pourghasemi et al., 2020),
support vector machines (SVM) (Mfondoum
et al., 2023), and logistic regression trees (LR)
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(Youssef et al., 2022) have demonstrated
superior predictive accuracy and adaptability
across diverse datasets. For instance,
Nachappa et al. (2020) applied and compared
logistic regression (LR) and support vector
machines (SVM) for multi-hazard exposure
mapping in the federal State of Salzburg,
Austria. Pourghasemi et al. (2023) assessed
the susceptibility of multiple natural hazards
(floods, landslides, forest fires, and
earthquakes) in Khuzestan Province, Iran,
using a range of ML models, including SVM,
random forests (RF), boosted regression trees
(BRT), and maximum entropy (MaxEnt).
Similarly, Nguyen et al. (2023b) used and
compared SVM, RF, and AdaBoost for
landslide and flood susceptibility assessment
in the North Central region of Vietnam.

Furthermore, hybrid methods that combine
multiple machine learning techniques have
become powerful improving
prediction accuracy and robustness (Bordbar
et al, 2022). Ensemble and hybrid models
offer significant advantages, such as improved
predictive accuracy by integrating outputs
from various algorithms to reduce biases and
enhance reliability (Costache et al., 2022).
These models are highly adaptable to high-
dimensional and noisy datasets, enabling the
incorporation of diverse environmental
factors. Additionally, ensemble models
provide probabilistic outputs and fine-grained
susceptibility maps, offering decision-makers
precise  tools for identifying  high-
susceptibility areas. They are also effective in
addressing multi-hazard interactions, such as
the interplay between LS-FF, making them
indispensable for integrated susceptibility
assessment (Zhang et al., 2022). For example,
Pourghasemi et al. (2019) developed a new
ensemble model, SWARA-ANFIS-GWO, for
multi-hazard probability mapping in Lorestan
Province, Iran.

tools for
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Despite  these  advancements, most
techniques focus on assessing either LS or FF
in isolation, neglecting their
interdependencies and combined impacts.
Therefore, the application of advanced
ensemble models remains underexplored in
multi-hazard contexts. While individual
machine learning models have been widely
applied, there is a pressing need for innovative
approaches that integrate ensemble techniques
with domain-specific insights to improve
prediction performance and reliability. This
study aims to develop novel ensemble models
based on JCHAIDStar and various ensemble
techniques, namely Dagging (Dag), Bagging
(Bag), Decorate (Deco), and Cascade
Generalization (CG), for LS-FF susceptibility
mapping at Ha Giang Province, Vietnam. In
this province, historical records and recent
events indicate recurrent rainfall-induced
landslides and flash floods, particularly during
the monsoon season, resulting in severe socio-
economic losses. These hazards are closely
interrelated and often occur sequentially
during intense rainfall. Previous studies on
susceptibility and hazard in Ha Giang
Province and adjacent mountainous regions
have mainly focused on single hazards,
limiting their effectiveness in addressing
coupled LS-FF processes. Therefore, this
study aimed to address this gap by applying
advanced ensemble-based machine learning
models for integrated LS-FF susceptibility
assessment. Various statistical metrics,
including the Area Under the Curve (AUC) of
the Receiver Operating Characteristic (ROC),
were used for validation and comparison. By
integrating diverse datasets and accounting for
the complex interactions between LS-FF, this
research aims to produce high-accuracy
susceptibility maps that inform risk mitigation

strategies and contribute to sustainable

development.
2. Study area

Ha Giang province, located in the
northwestern region of Vietnam, covers about
7,929.5 km? (Fig. 1). Ha Giang is characterized
by rugged, diverse topography, with elevations
ranging from 800 m to 1,200 m above sea
level. The features numerous
mountainous landscapes, with 49 distinct
peaks. These peaks vary significantly in
elevation: 10 peaks are under 1,000 m, 24
peaks range from 1,000 m to 1,500 m, 10 peaks
range from 1,500 m to 2,000 m, and 5 peaks

province

range from 2,000 m to 2,500 m. This complex
topography, combined with high annual
rainfall and diverse geological formations,
makes the region highly susceptible to natural
hazards, particularly landslides and flash

floods.

Ha Giang's climate further accentuates its
vulnerability. The province experiences a
humid subtropical climate with pronounced
rainy and dry seasons. The rainy season
usually runs from May to October, with
annual rainfall ranging from 1,500 mm to
2,500 mm. Additionally, deforestation and
land-use changes driven by agricultural and
infrastructural development have exacerbated
the frequency and severity of these hazards.
Ha Giang has become a critical area for
implementing hazard mitigation strategies and
land-use planning. Comprehensive studies
examining the interplay among topographical,
climatic, and anthropogenic factors are
essential for developing effective LS-FF
susceptibility maps. These maps provide
valuable tools for guiding policymakers,
stakeholders, and local communities in
reducing disaster risks and promoting
sustainable development.
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Figure 1. Location of Ha Giang province, Vietnam
3. Methodology resource for assessing and forecasting
The methodology of this study is susceptibility zones for combined LS-FF

structured around a series of systematic steps,
as illustrated in Fig. 2. Initially, data
collection serves as the foundation for the
analysis, followed by the splitting of the
dataset for model training and testing.
Traditional modeling techniques are employed
alongside additional advanced models to
enhance prediction accuracy. The models are
then wvalidated wusing specific validation
metrics, ensuring their reliability and
performance. Finally, the validated models are
applied to generate LS-FF susceptibility maps,
providing valuable insights into the study's
objectives. The following sections outline
each of these steps in greater detail.

3.1. Data used
3.1.1. Inventory map

The inventory map is a crucial component
of this research, serving as a foundational
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hazards in the study area (Ullah et al., 2022).
A comprehensive inventory comprising 963
landslide locations and 106 flash flood points
was prepared. These data were collected from
field surveys, interpretation of Google Earth
images, and official records from the National
Center for Hydrometeorological Forecasting.
To ensure model robustness, an equal number
of non-hazard points were randomly selected
from stable areas. All spatial datasets were
processed at a consistent 30 m spatial
resolution.

For model training and validation, the
LS-FF dataset was randomly split into two
subsets: 70% for training and 30% for testing.
Apart from LS-FF Ilocations, 963 non-
landslide and 106 non-flash-flood locations
were identified in free-hazard areas and
combined with the inventory map to generate
datasets for modeling.
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Figure 2. Methodological flowchart of the present study

3.1.2. LS-FF conditioning factors

In a multi-hazard (LS-FF) susceptibility
assessment, it is crucial to identify and select
suitable conditioning factors. These factors
refer to the environmental, geographical, and
anthropogenic variables that simultaneously
influence the occurrence and severity of both
landslide and flash flood (LS-FF) hazards
(Ullah et al., 2022). In this study, thirteen
conditioning factors were selected for the
LS-FF susceptibility assessment: slope,
elevation, aspect, Topographic Wetness Index
(TWI), Stream Power Index (SPI), land
use/land cover, curvature, geology, distance to
rivers, distance to roads, rainfall, rainfall
threshold, and altitude difference. Rainfall
threshold values were selected based on
regional rainfall intensity-duration
characteristics and previous studies conducted
in northern Vietnam (Li et al., 2023). These
thresholds represent critical rainfall conditions
beyond which LS-FF events are more likely to

occur. A description of these factors and their
influence on LS-FF hazards is provided below
(Fig. 3 - Appendix)

Slope: Slope influences the gravitational
forces acting on soil and rock materials
(Deijns et al., 2024). Slopes in the 30 to 40
degree range are particularly critical, as they
are more likely to experience landslides due to
the balance between gravitational forces and
soil cohesion. Steeper slopes (> 40 degrees)
pose an even greater risk, especially during
heavy rainfall or seismic events, while gentler
slopes (< 30 degrees) are generally less prone
to landslides but may still experience
flooding. Analyzing slope steepness helps
identify high-risk areas, facilitating targeted
monitoring and the implementation of
intervention strategies.

Elevation: Elevation influences climatic
conditions, vegetation types, and soil
characteristics (Li et al., 2023). While higher
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elevations often receive more precipitation,
including snow above the snow line, rainfall
typically decreases with increasing elevation
due to atmospheric moisture depletion. Snow
accumulation at higher elevations can lead to
saturation during snowmelt, increasing
landslide risk. Additionally, elevation affects
vegetation types, which can either stabilize or
destabilize soil. Understanding elevation
gradients is crucial for predicting LS-FF
occurrence, especially in  mountainous
regions.

Aspect: It determines the exposure of
slopes to sunlight and moisture (Li et al.,
2023). South-facing slopes in the Northern
Hemisphere usually receive more sunlight,
leading to drier weather that can cause soil to
dry out and increase landslide risk. In
contrast, north-facing slopes may retain more
moisture, increasing flash flood susceptibility.

TWI: It provides insight into water
accumulation and saturation in the landscape
(Mfondoum et al., 2023). Higher TWI values
indicate areas prone to saturation, making
them vulnerable to landslides during heavy
rainfall. These areas may also experience
increased runoff, which can contribute to flash
flood events. TWI is particularly useful for
identifying potential hazard zones in regions
with complex water drainage patterns.

SPI: 1t measures the potential for erosion
based on terrain and flow accumulation
(Mfondoum et al., 2023). Higher SPI values
indicate stronger water flow, which can erode
soils and trigger landslides while also
increasing flood risk by generating faster
runoff. Understanding SPI helps identify areas
where erosion is likely, allowing for
preventive measures to mitigate both LS-FF
occurrences.

Land Use/Land Cover (LULC): Human
activities and land cover types greatly affect
soil stability and water movement (Deijns et
al., 2024). Deforestation, urbanization, and
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agricultural practices can destabilize slopes,
increasing the likelihood of landslides.
Conversely, well-managed forests and
grasslands can enhance soil stability and water
retention, reducing flash flood risk. Analyzing
land-use patterns helps identify areas that
require conservation efforts and sustainable
practices to mitigate hazards.

Curvature: It influences water flow and
accumulation (Akbar et al., 2023). Concave
areas tend to collect water, increasing
saturation levels and landslide risk, while
convex areas promote faster runoff, raising
flash flood potential. Understanding curvature
patterns helps predict how water will move
across the landscape during heavy rainfall,
thereby identifying at-risk areas.

Geology: Geological composition of an
area affects soil stability, permeability, and
drainage characteristics (Li et al., 2023;
Prakash et al.,, 2024a; Prakash and Pham,
2024). Certain geological formations, such as
clay or loose sediments, are more susceptible
to landslides when saturated. Similarly, rock
and soil types influence how quickly water
drains, thereby affecting flash flood
susceptibility. Assessing geological factors is
crucial for understanding the underlying risks
of LS-FF in a given area.

Distance to rivers: Proximity to rivers
significantly affects flood risk (Mfondoum et
al., 2023). Areas close to riverbanks are more
susceptible to flooding during heavy rainfall

or snowmelt. Additionally, rivers can
influence local geomorphology, thereby
exacerbating landslide risks on adjacent

slopes. Understanding the distance to rivers is
vital for predicting flood events and planning
effective mitigation measures.

Distance to roads: Roads can alter natural
water drainage patterns, leading to increased
runoff and soil erosion (Mfondoum et al.,
2023). They often disturb the landscape,
making slopes more prone to landslides.
Moreover, the presence of roads facilitates
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access for emergency services during flooding
events. Evaluating road distances helps
identify areas where infrastructure may need
improvement to mitigate hazards.

Rainfall: 1t is a primary trigger for both
LS-FF (Li et al., 2023). Intense or prolonged
rainfall can saturate soils, leading to
landslides, rapid surface runoff that causes
flash floods, and erosion. Monitoring rainfall
patterns is crucial for predicting these hazard
events and implementing early warning
systems.

Rainfall threshold: Establishing rainfall
thresholds helps identify critical points at
which the likelihood of LS-FF significantly
increases (Li et al., 2023). Areas that
frequently approach or exceed these
thresholds are particularly wvulnerable and
require close monitoring. Understanding these
thresholds enables better preparedness and
response planning.

Altitude difference: The difference in
altitude between two points can influence
water flow dynamics and soil stability (Li et
al., 2023). Significant altitude differences may
cause rapid changes in runoff patterns,
exacerbating both LS-FF risks. Understanding
these altitude variations is crucial for
accurately modeling water movement and
assessing hazards in areas with diverse
topography
3.2. Methods used
3.2.1. Dagging (Dag)

To significantly enhance classification
accuracy, Ting and Witten pioneered the
Dagging (Disjoint Aggregation) algorithm in
1997 (Shen et al., 2023). This model partitions
the data into distinct sets. It reduces
overfitting and increases model stability,
making it particularly useful in environmental
risk assessments where data can be complex
and variable (Nohani et al., 2024). In this

approach, the dataset D is divided into disjoint
subsets D1, D2, ..., Dn, where each subset
contains a different part of the data. For each
subset D;, a separate model M; is trained. The
predictions from these models are aggregated
to provide a final output. If P;(x) represents
the prediction from model M; for an instance
x, the final prediction P(x) can be obtained by
averaging:

P(x)ﬁie(x) M

where P(x) is the final prediction, and P;(x) is
the prediction made by the model M; based on
subset D;. For that, the original dataset D is
split into 7 disjoint subsets D;,D;,...,D,:
D=D,uD,u..D, and each subset D; is

used to train a different model.

For each subset D; in model training, a
separate base classifier (model) M; is trained.
This results in a series of models M;, M2, ...,
Mn, where each model Mi is trained only on
its corresponding subset D, For a given
instance x, each model M; makes a prediction
Pix). The final prediction P(x)
is reached by combining the predictions from
all models.

3.2.2. Bagging (Bag)

Bagging (Bootstrap Aggregating) is
another ensemble method similar to Dag, but
it uses bootstrapped subsets of the dataset,
each generated by random sampling with
replacement (Zhao et al., 2023). In bagging,
multiple models (classifiers) are trained on
these bootstrapped subsets, and their
predictions are aggregated (typically by
averaging or voting) to produce a final output.
Bagging is commonly used to reduce variance
and improve the reliability and precision of

models, especially  in  high-variance
algorithms such as decision trees. The original
dataset D is used to create multiple

bootstrapped subsets, where each subset Di is
generated by random sampling with
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replacement from D. This means some data
points may appear more than once in a given
subset, while others may not. While Dag uses
disjoint  subsets (without replacement),
bagging uses bootstrapped subsets (with
replacement). This means that, in bagging,
some instances may appear multiple times in a
subset, while others may not appear in any
subset at all. Random Forest is a prime
example of bagging, where multiple decision
trees are trained on bootstrapped datasets, and
their outputs are combined to form a stronger,
more stable prediction model.

3.2.3. Decorate (Deco)

Decorate is an ensemble learning method
that aims to increase diversity among base
models to improve predictive performance
(Le Minh et al., 2023). The Deco algorithm
works by training a group of classifiers using
the original training data and then adding
artificially generated examples to each
classifier's training set. These artificial
examples are relabeled to oppose the current
ensemble's predictions, encouraging diversity
among the models.

By balancing diversity and accuracy, Deco
often remains stable and performs well even
with fewer base classifiers than other
ensemble methods like Bagging or Boosting.

PW)=2 Y ) e

While C; is the prediction made by the
ii-th classifier in the ensemble. A new
classifier C; is trained on the combined set
DuUD,,, (Du:: random data points from the

input space).
3.2.4. Cascade Generalization (CG)

CG is a machine learning method that
sequentially organizes a series of classifiers,
enabling efficient classification by processing
only the necessary data at each stage (Hong,
2023). The primary goal is to create a robust
classifier by incrementally building on
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previous classifiers, each specializing in
filtering out negative instances while retaining
positive ones. The mathematical
representation of CG can be illustrated
through the concept of cumulative sensitivity
across stages. If we denote the sensitivity of
the i-th stage as S, the overall sensitivity Sy
can be represented:
S =8.5,8,..5 3)
while #n is the total number of stages. In
practice, the algorithm is often trained using
techniques such as AdaBoost, which
optimizes feature selection at each stage based
on a desired detection rate. This hierarchical
approach enhances the accuracy of the multi-
stage risk assessment while reducing
computational costs by limiting detailed
analysis to only the most relevant areas. By
utilizing this method, researchers can create
more robust models that adaptively manage
the complexity of assessing susceptibility to
natural hazards, ensuring both efficiency and
accuracy in the results

3.2.5. JCHAIDStar

The JCHAIDStar algorithm is an advanced
version of the CHAID (Chi-squared
Automatic Interaction Detector) algorithm,
widely used to construct decision trees,
especially for categorical variables (Kass,
1980). The CHAID, is an offshoot of AID
(Automatic Interaction Detection) designed
for a categorized dependent variable (Kass,
1980). The CHAID technique divides the data
into mutually exclusive, exhaustive groups
that best explain the dependent variable. The
subsets are made by using small sets of
predictors. The chosen predictors can then be
used in further analyses to predict the
dependent variable, or, instead of the
complete set, in later data collection (Kass,
1980).

JCHAIDStar refines the original CHAID
approach by introducing new heuristics to
better handle more intricate data patterns.
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These enhancements allow JCHAIDStar to
maintain accuracy and performance even
when the standard CHAID algorithm
struggles with complex data or is less robust.
JCHAIDStar follows a decision tree induction
approach, repeatedly dividing the data into
smaller groups based on the most significant
splitting variables. The goal of JCHAIDStar is
to maximize the discrimination of target
categories while minimizing overfitting and
maintaining interpretability.

3.2.6. Logistic Regression (LR)

LR is a popular machine learning
technique wused in LS-FF susceptibility
assessment and classifying the likelihood of
LS-FF in a given area based on various
features. LR is typically used for binary
classification problems, to classify whether a
landslide will occur at a specific location and
estimate the probability of occurrence based
on input features such as Topographical
features, Soil characteristics, Climatic factors,
Land use, and so on.

LR estimates the relationship between the
dependent variable (la LS-FF occurrence) and
independent variables (e.g., slope, rainfall,
type) by calculating the odds or
probability of a LS-FF occurring at a
particular location.

soil

1
P(y = 1|)() - 1+ ef(ﬂoJrﬁ]X]+/32X2+-“+ﬁnxn) (4)

Where P(y=l|X) is the probability of a
LS-FF; XI’XZ"“>Xn are the independent
variables (features), f,,p,p5,,....3, are the
model coefficients represent the influence of
each feature on the LS-FF probability.

3.2.7. Support Vector Machines (SVM)

SVM is a robust machine learning
algorithm wused for classification and
regression tasks (Pal et al., 2024), including
susceptibility assessments for natural hazards
like LS-FF. In these applications, SVM helps

to classify areas into different susceptibility
zones based on input factors such as slope,
rainfall, land use, soil type, and distance to
rivers. SVMs work by finding a flat surface
that separates the data into different groups
(e.g., low, moderate, high susceptibility) in a
multidimensional space. The algorithm
optimizes the margin between the data points
and the hyperplane, ensuring robust
classification. In the context of LS-FF
susceptibility, the data points represent
geographical locations characterized by
various environmental and  physical
parameters.

f(x)=wx+b=0 5)
where W is the weight vector (a vector of
coefficients that define the orientation of the
hyperplane); X is the input vector
(comprising variables like slope, rainfall,
distance to rivers, etc.); b is the bias term
(intercept).

In susceptibility mapping, SVMs can be
trained on datasets where each instance
corresponds to a geographical location with
known environmental attributes (e.g., slope,
aspect, rainfall) and a susceptibility class (e.g.,
landslide occurred or did not occur). After
training, the SVM model can be used to
predict susceptibility levels for new areas
based on the same set of input attributes.

3.2.8. Validation metrics

In LS-FF susceptibility assessments,
validation metrics are essential for evaluating
the performance and reliability of ML-based
prediction models. In this study, various
popular validation metrics, namely AUC
(Area Under the Receiver Operating
Characteristic ~ Curve), NPV  (Negative
Predictive Value), PPV (Positive Predictive
Value), Sensitivity (SST), Specificity (SPF),
Kappa, RMSE (Root Mean Square Error),
were used for validation and comparison of
the models. Descriptions of these metrics are
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given below (Anh et al., 2025; Pham et al.,
2022):

AUC is a commonly used metric to assess
a model's performance at distinguishing
between classes, such as hazardous and non-
hazardous areas (Nhat et al., 2025; Prakash et
al.,, 2024b; Wang et al., 2024). It shows the
True Positive Rate (Sensitivity) compared to
the False Positive Rate (1-Specificity) at
different thresholds. AUC values vary from
0.5 (no better thanchance)to 1 (perfect
discrimination). For hazardous models, a high
AUC value indicates that the model
effectively  identifies  susceptibility-prone
areas while minimizing false alarms.

NPV measures the proportion of true
negatives (non-hazardous areas correctly
identified) among all predictions classified as
negative (Le Minh et al., 2023). This metric is
significant in scenarios where the cost of
missing a hazard is high, ensuring that areas
predicted to be safe truly pose minimal risk.
For hazardous models, a high NPV provides
confidence in non-hazardous classifications,
which is critical for planning and resource
allocation in regions identified as low-
susceptibility.

PPV evaluates the proportion of true
positives  (hazard-prone areas  correctly
identified) out of all positive predictions (Saha
et al., 2023). This metric is important for
evaluating the trustworthiness of high-
susceptibility classifications and for reducing
unnecessary interventions in areas falsely
marked as hazardous. In hazardous modeling, a
high PPV ensures that predictions of hazardous
zones are accurate, helping focus preventive
measures on genuinely susceptible areas.

SST quantifies a model's ability to
correctly identify all hazardous zones
(Nguyen et al., 2024). This metric is
particularly significant when minimizing
missed hazards is critical, as false negatives
can have devastating consequences. In the
context of hazardous models, high sensitivity
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ensures that most at-risk areas are identified,
making it a key indicator of a model's
effectiveness in hazard detection.

SPF measures a model's ability to correctly
identify non-hazardous areas (Nguyen et al.,
2024). A high SPF is crucial for reducing
false alarms, ensuring that resources are not
wasted on areas mistakenly identified as
hazardous. For hazardous models, specificity
complements sensitivity by balancing hazard
detection with the accuracy of identifying safe
zones, thereby improving overall reliability.

Kappa evaluates the agreement between
predicted and observed classifications while
accounting for chance agreement (Youssef et
al., 2024). Ranging from -1 (worse than
random) to 1 (perfect agreement), Kappa is a
robust metric for validating models,
particularly in imbalanced datasets where
class distributions differ significantly. In
hazardous modeling, Kappa assesses the
reliability of classifications, ensuring that the
model's predictions are meaningful and not
coincidental.

RMSE measures the average deviation
between predicted and observed values in
models with continuous outputs, such as
susceptibility indices (Youssef et al., 2024).
RMSE is a useful metric for quantifying
prediction accuracy, with lower values
indicating better model performance (Ngo et
al., 2022; Nguyen et al., 2023a; Pham, 2024).
In hazardous models, RMSE is particularly
useful for assessing the precision of
continuous outputs, helping refine models to
minimize prediction errors and improve
practical applicability.

4. Results and discussion

4.1. Validation and comparison of the
models

Various models, namely Bag-JCHAIDStar,
Dag-JCHAIDStar, Deco-JCHAIDStar, CG-
JCHAIDStar, JCHAIDStar, LR, and SVM,
were constructed and validated using training
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and testing datasets. The results are shown in
Table 1, Table 2, and Fig. 4. Hyperparameters
for all ML models were optimized using a
trial-and-error  grid-based approach. The
optimal parameter sets were retained for final
model training.

As summarized in Table 1, all ensemble-
based JCHAIDStar models outperformed the
single JCHAIDStar, LR, and SVM models on
the training dataset across all evaluation
metrics. Among them, Bag-JCHAIDStar
consistently achieved the best performance,
with the highest -classification accuracy,
agreement  (Kappa),  sensitivity,  and
specificity, and the lowest prediction error
(RMSE).

The ROC analysis (Fig. 4) clearly
demonstrated the superior discriminatory
capability of ensemble models over single
benchmark models, with Bag-JCHAIDStar
consistently achieving the highest AUC values

for both training and testing datasets,
confirming its  excellent  classification
performance and stability. In general, the
results demonstrated a clear advantage of
ensemble-based models over traditional single
models in LS-FF susceptibility assessment.
This improvement is attributed to ensemble
techniques' ability to integrate multiple base
learners, thereby capturing complex nonlinear
relationships while reducing model variance
and bias (Choubin et al., 2024). Among all
evaluated models, Bag-JCHAIDStar emerged
as the most reliable and accurate approach,
achieving the best balance between sensitivity
and specificity and the lowest prediction errors
across datasets. While Deco-JCHAIDStar and
CG-JCHAIDStar also performed well, they
consistently remained slightly inferior to
Bag-JCHAIDStar. Dag-JCHAIDStar exhibited
moderate  performance, particularly in
generalization to the test dataset.

Table 1. Validation of the models using the training dataset

Models

No | Parameters

Deco- Dag- CG- Bag-
JCHAIDStar | LR | SVM | 5044 ipStar [JCHAIDStar JCHAIDS ar| JCHAIDStar
1 PPV (%) 86.42 79.17 79.44 90.46 81.05 86.56 94.76
2 NPV (%) 89.39 74.67 70.58 89.20 85.85 88.45 92.55
3 SST (%) 91.86 81.24 78.91 92.07 88.81 91.22 94.63
4 SPF (%) 82.62 72.12 71.24 87.09 76.58 82.61 92.72
5 ACC (%) 87.67 77.28 75.72 89.93 83.06 87.35 93.83
6 Kappa 0.75 0.54 0.50 0.79 0.66 0.74 0.87
7 RMSE 0.30 0.39 0.41 0.30 0.36 0.31 0.23
Table 2. Validation of the models using the testing dataset
Models

No | Parameters

JCHA- LR SVM Deco- Dag- CG- Bag-
IDStar JCHAIDStar | JCHAIDStar | JCHAIDStar | JCHAIDStar

1 PPV (%) 85.31 87.50 | 87.19 89.06 84.69 86.56 90.31
2 NPV (%) 85.93 74.14 | 73.38 84.79 87.45 85.93 85.55
3 SST (%) 88.06 80.46 | 79.94 87.69 89.14 88.22 88.38
4 SPF (%) 82.78 82.98 | 82.48 86.43 82.44 84.01 87.89
5 ACC (%) 85.59 81.48 | 80.96 87.14 85.93 86.28 88.16
6 Kappa 0.71 0.62 0.61 0.74 0.72 0.72 0.76
7 RMSE 0.34 0.36 0.38 0.32 0.34 0.34 0.29
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Figure 4. Model performance was evaluated using ROC curves and AUC

4.2. LS-FF susceptibility maps

LS-FF susceptibility maps
were created using different models, including
JCHAIDStar, LR, SVM, Deco-JCHAIDStar,
Dag-JCHAIDStar, CG-JCHAIDStar, and
Bag-JCHAIDStar, into five classes as shown

in Fig. 5. In the initial step, LS-FF
susceptibility indexes were generated by
training the models on every pixel of

the research area. These indices were then
classified into five categories: very high, high,

04 IE 196'0E 105°30€

moderate, low, and very low. The
classification was performed using the Natural
Breaks classification method in ArcGIS,
which improves class boundaries by
minimizing variance within each class and
increasing variance between classes, making it
particularly effective for identifying patterns
in spatial data with varied distribution.
Table 3 provides an analysis of the
distribution of classes and LS-FF events
across the generated maps.
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Figure 5. LS-FF susceptibility maps in Ha Giang. Using different machine-learning models:
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Table 3. Statistical analysis of the LS-FF susceptibility maps

Models Class Class LS | FF |LS-FF| % % | % | % |FR|FR]| FR
pixel | pixels | pixel | pixels [ Class | LS | FF |LS-FF| LS | FF |[LS-FF

Very low 114431 4 2 6 11,64 | 1,69 | 8,33 | 2,30 [0,14]0,72| 0,20

Low 155123 30 2 32 15,78 | 12,66 | 8,33 | 12,26 |0,80|0,53| 0,78

JCHAIDStar |[Moderate 257107 37 6 43 26,16 | 15,61 (25,00 16,48 |0,60]0,96| 0,63
High 227590 90 6 96 23,16 37,97 (25,00 36,78 | 1,64|1,08| 1,59

|Very high 228607 76 8 84 23,26 32,07 |33,33| 32,18 | 1,38 1,43 | 1,38

Very low 144404 13 2 15 14,69 | 5,49 | 833 | 5,75 [0,37|0,57| 0,39

Low 168536 27 4 31 17,15 11,39 |16,67| 11,88 |0,66|0,97| 0,69

ILR IModerate 199146 46 3 49 20,26 (19,41 (12,50 18,77 |0,96]0,62| 0,93
High 235448 53 6 59 23,96 | 22,36 (25,00( 22,61 |{0,93|1,04| 0,94

|Very high 235324 98 9 107 | 23,94 |141,35|37,50( 41,00 |1,73(1,57| 1,71

Very low 184962 12 1 13 18,82 | 5,06 | 4,17 | 4,98 [0,27]|0,22| 0,26

Low 182949 24 5 29 18,61 | 10,13 {20,83| 11,11 [0,54|1,12| 0,60

SVM IModerate 197006 39 6 45 20,04 | 16,46 (25,00( 17,24 10,82 |1,25| 0,86
High 225825 67 3 70 22,98 | 28,27 (12,50 26,82 |1,2310,54| 1,17

|Very high 192116 95 9 104 19,55 (40,08 {37,50| 39,85 [2,05|1,92| 2,04

Very low 128287 12 2 14 13,05 | 5,06 | 8,33 | 5,36 [0,39]0,64| 0,41

b Low 171018 23 3 26 17,40 | 9,70 |112,50| 9,96 [0,56|0,72| 0,57
JCeI?I(;IDStar Moderate 227620 | 33 5 38 | 23,16 | 13,9220,83] 14,56 [0,60]0,90| 0,63
High 229996 66 6 72 23,40 | 27,85 (25,00( 27,59 |1,19|1,07| 1,18

|Very high 225937 103 8 111 22,99 | 43,46 |33,33| 42,53 [1,89|1,45| 1,85

Very low 180996 26 1 27 18,42 (10,97 | 4,17 | 10,34 |0,60|0,23 | 0,56

b Low 180896 19 5 24 18,41 | 8,02 |20,83| 9,20 [0,44|1,13| 0,50
JCaI%I-AIDStar IModerate 221746 49 4 53 22,56 | 20,68 [16,67| 20,31 |{0,92]0,74| 0,90
High 206501 50 7 57 [21,01]21,10(29,17] 21,84 |1,00]1,39] 1,04

|Very high 192719 93 7 100 19,61 | 39,24 (29,17 38,31 (2,00|1,49| 1,95

Very low 126570 6 3 9 12,88 | 2,53 [12,50| 3,45 [0,20|0,97| 0,27

G Low 148497 | 28 1 29 | 1511 ]11,81 4,17 [ 11,11]0,78]0,28] 0,74
JCI—iAIDStar Moderate 257107 37 6 43 26,16 | 15,61 (25,00 16,48 |0,60]|0,96| 0,63
High 221657 90 6 96 22,55 (37,97 (25,00| 36,78 | 1,68|1,11| 1,63

|Very high 229027 76 8 84 23,30 32,07 |33,33| 32,18 |1,38|1,43| 1,38

Very low 141369 7 1 8 14,38 | 2,95 | 4,17 | 3,07 |0,21]0,29| 0,21

Ba Low 155529 15 3 18 15,82 | 6,33 |12,50| 6,90 [0,40|0,79| 0,44
JCI%I-AIDStar Moderate 192661 31 5 36 19,60 | 13,08 120,83 | 13,79 [0,67|1,06| 0,70
High 220762 57 7 64 22,46 | 24,05 (29,17 24,52 |1,07|1,30| 1,09

|Very high 272537 127 8 135 | 27,73 |1 53,5933,33| 51,72 11,93 |1,20| 1,87
It is evident that ensemble models, such as  actionable insights for risk mitigation and

Bag-JCHAIDStar, generally outperform the
others by accurately identifying high-
susceptibility zones while maintaining a
balanced distribution across all classes.
Individual models like SVM and LR also
demonstrate strong performance in
concentrating LS-FF events within higher
susceptibility categories, but may require
adjustments to address specific weaknesses.
Overall, these models serve as valuable tools for
LS-FF  susceptibility = mapping, offering
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decision-making.
6. Conclusions

This study demonstrated the significant
advantages of ensemble-based machine
learning models for integrated landslide-flash
flood (LS-FF) susceptibility = mapping
in Ha Giang Province, Vietnam.
Comparative evaluation of Bag-JCHAIDStar,
Dag-JCHAIDStar, Deco-JCHAIDStar,
CG-JCHAIDSar, single JCHAIDStar,
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Logistic Regression, and SVM models
confirmed the superior performance of
ensemble approaches. Among them, Bag-
JCHAIDStar consistently performed best,
achieving the highest predictive accuracy and
stability across both training and test datasets,
with AUC values of 0.985 and 0.951,
respectively, and the lowest prediction errors.
This superior performance is primarily
attributed to the Bagging technique, which
enhances model stability, reduces variance,
and improves generalization when compared
with  single- and  conventional-model
approaches.

The strong, consistent performance of
Bag-JCHAIDStar underscores its suitability
for generating high-confidence = LS-FF
susceptibility maps that can effectively
support land-use planning, hazard mitigation,
and disaster risk management. The proposed
ensemble framework provides a reliable
decision-support tool for identifying high-risk
zones, prioritizing mitigation measures, and
improving early warning and preparedness
strategies in mountainous regions prone to
cascading hazards.

Despite the encouraging results, model
performance may still be influenced by data
quality, spatial resolution, and regional
environmental variability. Therefore, future
studies should focus on incorporating
additional triggering and dynamic factors,
such as soil moisture and event-based rainfall
characteristics, and on testing the proposed
framework in other geographic and climatic
settings to enhance further its robustness,
transferability, and practical applicability for
disaster risk reduction.
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