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ABSTRACT

In this paper, the main objective is to predict total bearing capacity (TBC) of pretensioned spun concrete piles
(PSCP) using Machine Learning (ML) methods namely Reduced Error Pruning Tree (REPT), Gaussian Process (GP),
Artificial Neural Networks (ANN) and two novel hybrid models including: Cascade Generalization based Gaussian
Processes (CG-GP) and Cascade Generalization based Artificial Neural Networks (CG-ANN) based on data from 95
PSCP piles installed at the Hoa Binh 5 wind power plant project in Vietnam. For model development, field-estimated
TBC values obtained from Pile Driving Analyzer (PDA) tests were used as the output parameter. The predictive
capability of the models was validated using common statistical indicators, namely Mean Absolute Error (MAE),
Coefficient of Determination (R?) and Root Mean Square Error (RMSE) with 70% of the data used for training and
30% for testing. The results indicated that the proposed hybrid CG-ANN model (R? = 0.935, RMSE = 44.691 ton,
MAE = 30.215 ton) outperformed all other models including CG-GP (R* = 0.929, RMSE = 50.738 ton,
MAE = 37.812 ton), Artificial Neural Networks - ANN (R2 =0.926, RMSE = 47.963 ton, MAE = 32.167 ton), REPT
(R?=0.776, RMSE = 75.350 ton, MAE = 53.115 ton) and GP (R*= 0.916, RMSE = 52.785 ton, MAE = 39.967 ton)
in the correct prediction of the TBC of PSCP. The results demonstrate that the hybrid CG-ANN model can serve as
an efficient and reliable tool for rapid, accurate estimation of PSCP bearing capacity, thereby helping reduce the time
and cost associated with elaborate field testing.

Keywords: Pile driving analyzer, Pretensioned Spun Concrete Piles, bearing capacity, hybrid model, cascade
generalization, Gaussian processes.

1. Introduction in soft soil foundations due to their high axial
load-carrying capacity, efficient on-site
construction, reasonable quality control, and
cost-effectiveness (Ren et al, 2023). To
evaluate the quality of the PSCP, the total
bearing capacity of the piles is often used as a
metric. This important parameter can be

In civil engineering, Pretensioned Spun
Concrete Piles (PSCP) foundations are
commonly used for the construction of piled
embankments, marine structures, buildings,
and bridges. They have been widely adopted

determined by various field tests, namely Pile

*Corresponding author, Email: damnd@utt.edu.vn Driving Analyzer (PDA) tests, high-strain
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dynamic testing, static axial compressive load
testing, and Osterberg testing. Among these,
the PDA offers faster test time and lower cost
than static axial compressive load testing and
is especially effective for driven piles, pressed
piles, and piles lying in the middle of seas and
rivers. In fact, conducting field tests requires a
large area and substantial auxiliary equipment,
especially for piles located in rivers and the
sea. Moreover, a large amount of test data is
needed to reduce experimental errors and
ensure accurate calculation of the total bearing
capacity of the piles. In view of this problem,
many prediction models have been proposed
to establish the relationship between
influencing factors (such as pile type, pile
construction method, pile fabrication material,
pile size, length of pile submerged in soil,
physico-mechanical characteristics of soil,
and settlement of piles) with the pile bearing
capacity (Fatehnia et al., 2018). However, in
many cases, the predictions from these models
differ widely from the experimental data due
to significant variation in soil mechanical
parameters. In addition, empirical equation-
based traditional prediction models consider
only a limited number of factors. Therefore, it
does not reflect the complex nature of the
prediction problem of the total bearing
capacity of the piles.

In recent decades, several Artificial
Intelligence (AI) or Machine Learning (ML)-
based predictive models have been developed
and applied to solve engineering problems
(Anitescu et al., 2019; Guo et al.,, 2022a,
2022b; Guo et al., 2019; Zhuang et al., 2021).
Basically, ML models are computational
algorithms that learn from data and make
predictions or decisions without being
explicitly programmed; thus, they can
effectively handle large datasets and complex
problems with many input variables. In the
literature, ML models have been effectively

applied to predict the load capacity of various
types of piles. For instance, Tarawneh (2013)
compared Artificial Neural Network (ANN)
and Gaussian Process (GP) for the estimation
of the driven pile bearing capacity based on
input variables such as drained pile-soil
interface friction angle, soil friction angle,
drained cohesion of the soil, flap number, pile
embedded length, effective soil specific
weight, and pile cross-section area. Alkroosh
et al. (2015) applied the Least Squares
Support Vector Machine to predict the load-
bearing capacity of bore piles using several
input variables, including pile diameter,
average cone point resistance within the tip
zone, pile length, and average cone point
resistance along pile shaft. In addition, the
ANN is very effectively employed in
predicting the load capacity of many different
types of piles (Alkroosh et al, 2015;
Harandizadeh et al., 2021).

In recent years, hybrid/ensemble ML
models have been known to be more
advanced and effective than single ML
models for prediction. Harandizadeh et al.
(2021) developed and applied different
ensemble models, namely ANFIS-GMDH-
PSO: a combination of Group Method of Data
Handling (GMDH),  Particle = Swarm
Optimization (PSO) algorithm, and Adaptive
Neuro-Fuzzy Inference System (ANFIS)
methods, GMDH-based Fuzzy Polynomial
Neural Network (FPNN-GMDH), and
compared with a single ANN model for the
estimation of the load-bearing capacity of
different types of piles, including bored piles,
concrete, and steel driven piles. Yong et al.
(2021) developed several hybrid ML models,
namely SA-GP, a combination of simulated
annealing (SA) and genetic programming
(GP), for predicting the ultimate bearing
capacity of driven piles. They concluded that
the novel model SA-GP outperformed two
other single ML models, namely the adaptive
neuro-fuzzy inference system (ANFIS) and
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GP. Momeni et al. (2014) combined an ANN
with a genetic algorithm (GA) to predict the
total bearing capacity of precast concrete
piles. They concluded that the novel GA-
ANN model performed well and was superior
to a conventional ANN. Armaghani et al.
(2017) developed a novel hybrid model,
namely PSO-ANN, which was a combination
of ANN and particle swarm optimisation
(PSO) for prediction of the ultimate bearing
capacity of rock-socketed piles, and stated
that the PSO-ANN improved the performance
of conventional ANN model for prediction of
the ultimate bearing capacity of rock-socketed
piles.

In this study, two novel hybrid machine
learning models, Cascade Generalization-
based Gaussian Process (CG-GP) and
Cascade  Generalization-based  Artificial
Neural Network (CG-ANN), are developed to
predict the total bearing capacity (TBC) of
pretensioned spun concrete piles (PSCP).
These models integrate cascade generalization
(CG) with GP and ANN, respectively, to
exploit hierarchical learning and improve
prediction performance. The models are
developed using input parameters derived
from 95 field PDA tests conducted at different
sites in Vietnam. In addition, two single ML
models, namely the Reduced Error Pruning
Tree (REPT), GP, and ANN, are employed as
benchmark models for comparison and
validation. The key novelty of this study lies
in the first-time application of the CG-GP and
CG-ANN hybrid frameworks for predicting
the total bearing capacity of PSCPs, which has
not been previously reported in the literature.
Model performance is evaluated using
standard  statistical indicators, including
RMSE, R? and MAE, and analyses are
conducted using the Weka and Python
software platforms.
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2. Materials and Methods
2.1. Data used

In this work, data were collected from 95
field PDA tests conducted at the Hoa Binh 5
wind power plant project in Vietnam. This
project is built on 27.7 hectares and includes
26 wind turbine towers with a capacity of
3.0-3.3 MW. The turbines are about 140 m
tall. Using the PDA tests, the TBC of the piles
was determined by following the equations:

TBC =SF + EB (D
Where TBC: total bearing capacity of the
prestressed reinforced concrete porous piles,
SF: shaft resistance, and EB: toe resistance.

In ML model studies, selecting appropriate
input parameters
prediction. In the present study, 12 input
variables were chosen to indicate TBC as the
output (Y). The 12 input parameters include:
Pile diameter (X1), Embedded length (X2),
Settlement of piles (X3), Modulus of dynamic
elasticity (X4), Cross-sectional area at the pile
top (X5), Cross-sectional area at the pile tip
(X6), Mean SPT along the pile shaft (X7),
Mean SPT along the pile tip (X8), cohesion
along the pile shaft (X9), Friction angle along
the pile shaft (X10), cohesion along the pile
tip (X11), and Friction angle along the pile tip
(X12). Choosing the input parameters in the
models' study is based on the experience and
published literature on the theoretical basis of
the PDA test (Gravare, 1980; Likins et al.,
1988); empirical and analytical methods
(Meyerhof, 1976); and Artificial Intelligence
models (Fatehnia et al., 2018). Table 1 shows
the initial analysis of the variables used in this
study. In the modeling, the
randomly divided into two parts: a training
dataset (70%) and a testing dataset (30%),
which were used for training and validating
all models.

is crucial for accurate

data were
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Table 1. Analysis of value distribution of the inputs and outputs used in the modeling

No Variables Unit Min Max Average Standard Deviation
1 X1 mm 500.00 800.00 694.737 143.192

2 X2 m 24.00 59.00 39.001 11.619

3 X3 mm 11.838 51.182 24.306 6.435

4 X4 ton/cm 497.300 539.900 525.041 14.920

5 X5 cm’ 1,055.575 2,902.800 2,099.371 775.553

6 X6 cm’ 1,963.495 5,026.548 3,950.139 1,462.042

7 X7 - 5.000 14.939 11.587 2.375

8 X8 - 9.000 39.000 19.971 5.925

9 X9 kPa 7.510 44.931 20.400 11.177

10 X10 degree 0.000 12.000 7.211 3.692

11 X11 kPa 0.000 203.750 48.795 49.295

12 X12 degree 0.000 27.500 8.974 9.214

13 Y ton 162.000 896.000 446.029 191.535

2.3. Methods used probabilistic perspective on the problem, and

2.3.1. REPT: Reduced Error Pruning Tree

REPT is a combination of two techniques:
Decision Tree (DT) and Reduced-Error
Pruning (REP). It is a fast learning process
that uses tree splitting and pruning (Quinlan,
1987). In this technique, the DT is first used
to simplify and reduce the complexity of the
model's training process when using extensive
input data. Thereafter, the REP is used to
reduce the error arising from model variance
(Chen et al.,, 2019). In addition, it uses
information gain (IG) as the splitting criterion
and prunes using REP (with back-fitting)
(Daud et al.,, 2009; Jayanthi et al., 2013;
Omran et al., 2016; Zhao et al., 2008). The
Kullback-Leibler divergence of a conditional
probability distribution can often be regarded
as equivalent to the IG's expectation value
(Garcia et al., 2002). REPT is a popular ML
method because it seeks a good sub-tree via
post-pruning (Mohamed et al., 2012). In the
present study, the REPT was selected to
estimate the TBC of PSCP.

2.3.2. GP: Gaussian Processes

GP is known as a state-of-the-art
probabilistic regression technique based on a
Bayesian nonparametric framework (Williams
et al., 2006). In this context, the Bayesian
framework is widely used to provide a

its hyperparameters determine the
characteristic length scales of the GP (Neal,
1996). Basically, a Bayesian neural network
with the limitation of an infinite number of
hidden units is considered as a GP (MacKay
et al., 2003). GP is shown as a promising
technique for solving many statistical
problems in the physical sciences
(Ambikasaran et al., 2015). It is one of the
best techniques as the problems require the
flexibility of  continuous functions.
Nevertheless, its applications are limited by
the computational cost of determinant
calculation and matrix inversion
(Ambikasaran et al., 2015). In this study, the
GP was used as a base predictor within an
ensemble framework, with the Cascade
Generalization optimizer, to predict the TBC
of PSCP.

2.3.3. ANN: Artificial Neural Networks

ANNs are often referred to as neural
networks inspired by the structure and
functioning of biological neural networks in
the human brain (Krogh, 2008; Thai et al.,
2022). It has gained significant popularity and
has become a fundamental concept in the field
of ML. It receives one or more inputs, applies
a weighted sum of them, passes the sum
through an activation function, and produces
an output. An activation function introduces
nonlinearity into the network, enabling it to
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model complex relationships between inputs
and outputs. In ANN, neurons are organized
into layers within a neural network (Hopfield
et al., 1988). The three main types of layers
are the input layer, hidden layers, and output
layer. The input layer receives the initial input
data, and the output layer produces the final
output or prediction. The hidden Ilayers,
situated between the input and output layers,
use activation functions and perform
intermediate computations. The connections
between neurons in different layers are
represented by weights (Mitchell, 1997).
These weights determine the strength of
influence each neuron exerts on neurons in
subsequent layers. During training, the
weights are adjusted based on observed input-
output patterns, allowing the network to learn
and improve its performance over time.

2.3.4. CG: Cascade Generalization

Cascade Generalization (CG) is an
effective ensemble technique that sequentially
combines algorithms to improve weak
predictors (Gama et al.,, 2000b). At a high
level, the training dataset used to train a
predictor is enhanced by incorporating new
input features derived from the outputs of a
weak predictor (Kraipeerapun et al., 2019).
Out of these, tight coupling is considered
more flexible than loose coupling (Zhao et al.,
2004). The degree to which other prediction
techniques are combined with decision tree
predictors is limited by CG via the maximum
cascading depth (Zhao et al., 2004). It can
reduce bias and increase the complexity
fitness (or flexibility) of the predictors learned
by decision tree inducers. In this work, CG
was used to optimize the performance of the
predictors, namely GP and ANN, on which
the hybrid models, namely CG-GP and CG-
ANN, were generated for the prediction of
TBC in PSCP.

2.3.5. Validation methods

The predictive performance of the applied
models was evaluated using analytical
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standard parameters (Van Le et al., 2023):
coefficient of determination (R?), root mean
square error (RMSE), and mean absolute error
(MAE). R” is a commonly used regression
parameter to assess model fit (Le et al., 2022;
Montgomery et al., 2021). R? is the square of
the coefficient of correlation (R) between the
predicted and actual results, ranging from O to
1. A higher R* value indicates a stronger
correlation between the predicted and actual
values (Duc et al., 2025; Pham et al., 2021).
RMSE is calculated by taking the square root
of the average of the squared differences
between predicted and actual outputs, while
MAE is determined by computing the average
of the differences between predicted and
actual outputs (Nguyen et al., 2023; Nguyen
et al., 2022; Rehamnia et al., 2023). Predictive
performance is perfect when R* = 1,
MAE = 0, and RMSE = 0. The R*, MAE, and
RMSE values are provided in the documents,
and lower MAE and RMSE indicate better
predictive capability of the models (Christie et
al., 2021; Vu et al., 2021a; Vu et al., 2021Db).

2.3.6. Relief F feature selection

ReliefF is a popular and effective feature
selection algorithm for ML modeling
(Urbanowicz et al., 2018). It is beneficial for
problems  involving  classification  or
regression, where the goal is to select a subset
of relevant features from a larger set. The
main objective of this method is to identify
and prioritize the most informative features
that contribute the most to the prediction or
target variable. It accomplishes this by
estimating feature quality based on their
ability to distinguish between instances of
different classes or regression targets
(Abdulrazaq et al., 2021).

Relief F is operated by calculating a
relevance score (average merit) for each
feature, indicating its importance in the
classification or regression process (Mahmood
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et al., 2022). Relief F accounts for both the
individual feature's relevance and its
interactions with other features. This is
accomplished by comparing the feature values
of a randomly selected instance with those of
its nearest neighbors, both within and across
classes (Shukla et al., 2020). It assigns higher
scores to features that have consistent values
within instances of the same class and
different values across instances of various
classes (Mahmood et al., 2022). The intuition
behind this is that features with significant
differences in values between instances of
different classes are likely to be more
discriminative and informative. By selecting a
subset of relevant features using Relief F, one
can potentially improve the performance of
machine learning models by reducing
overfitting, enhancing interpretability, and
speeding up training and prediction (Shukla et
al., 2020).

In this work, ReliefF was used to validate
and select the important input variables for
predicting TBC in PSCP using various ML
models.

h 4

2.4. Methodological flowchart

The methodology employed in this study is
shown in Fig. 1. In the first step, a database
containing 12 input variables (X1-X12) and
one output variable (Y) was collected and
constructed. In the second step, the database
was randomly split into two parts: a training
dataset (70%) and a test dataset (30%) for
training and validation, respectively. In the
third step, the ML models (REPT, GP, ANN,
CG-GP, and CG-ANN) were constructed
using the training dataset. Of these, two
hybrid ML models, CG-GP and CG-ANN,
were built by combining CG optimization
with the single ML models GP and ANN,
respectively. In these two hybrid models, CG
was used to optimize the original training
dataset, and the resulting optimal dataset was
used for prediction with GP and ANN
algorithms. In the final step, the testing
dataset was used to validate the models using
standard statistical measures: R%, MAE, and
RMSE to find the best model for the
prediction.

Inputs vanables: X1, X2, X3, X4, X5, X6, X7, X8, X9. X10, X11. X12

Output varable ' Y

Training dataset (70%) <

Random divided

—= Testing dataset (30%)

v

Models testing and companison
(R2. RMSE. MAE)

v

Best model

¥

Figure 1. Methodological framework of models' study
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3. Results and discussion
3.1. Feature selection based on Relief F

Relief F was wused to validate the
importance of the input variables used in the
modeling. The feature selection results are
shown in Fig. 2. It can be observed that out
of 12 input variables X3 (average
merit = 0.072) is the most essential input

Aversge maerit
s

variable in predictive modeling of the TBC
of PSCP, followed by X10 (0.045), X9
(0.044), X7 (0.041), X5 (0.034), X8 (0.029),
X2 (0.024), X6 (0.015), X11 (0.014), X1
(0.013), X12 (0.008), and X4 (0.004),
respectively. It can be stated that all 12 input
variables contributed to predictive modeling
and were thus retained to predict the TBC of
PSCP.

Vanables

Figure 2. Importance of the input variables used in the modeling using Relief F

3.2. Evaluation and comparison of the ML
models

In the present study, five ML models,
namely REPT, GP, ANN, CG-GP, and CG-
ANN, were used to estimate the TBC of
PSCP. Among these, the novel hybrid models
CG-GP and CG-ANN were developed by
integrating cascade generalization (CG) with
two single ML techniques (GP and ANN),
respectively. The hyperparameters used to
train the models are given in Table 3.

Model performance was evaluated using
quantitative validation indicators, namely
RMSE, R?, and MAE, for both training and
testing datasets. Performance on the training
dataset reflects the goodness of fit, whereas
performance on the testing dataset reflects the
predictive capability of the models. The
validation results are illustrated in Figs. 3—6.
Figure 3 compares the predicted and actual
TBC values, showing that the model-predicted
values are closely aligned with the
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experimentally determined values. Figure 4
presents the R? values for the five models on
the training and test datasets. Using the
training dataset, the CG-ANN model achieved
the highest R? value (0.937), followed by
ANN (0.926), CG-GP (0.861), GP (0.847),
and REPT (0.818). Similarly, using the testing
dataset, the CG-ANN model again showed the
highest R? value (0.935), followed by CG-GP
(0.929), ANN (0.926), GP (0.916), and REPT
(0.776). Figure 5 shows the distribution of
error values, while Figure 6 compares R2
RMSE, and MAE across all models for both
training and test datasets. These figures
clearly indicate that the CG-ANN model has
the lowest RMSE and MAE, confirming its
superior predictive performance compared
with CG-GP, ANN, GP, and REPT.

Generally, the performance of all five ML
models used for predicting the TBC of PSCP in
this study is satisfactory; however, the novel
hybrid CG-ANN model demonstrated the best
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overall performance, followed by CG-GP,
ANN, GP, and REPT, respectively. The hybrid
models CG-ANN and CG-GP significantly
improved the predictive capability of the
corresponding single models (ANN and GP).
This improvement is attributed to the cascade
generalization framework, which effectively
reduces prediction bias and enhances model
flexibility by combining the strengths of
multiple learners while minimizing individual

model weaknesses (Gama et al., 2000a). In
addition, cascade generalization helps mitigate
overfitting by progressively increasing model
complexity, rather than relying on a single
highly complex model. The comparison with
previously published studies further indicates
that the proposed CG-ANN model outperforms
conventional ANN-based approaches used for
predicting the bearing capacity of driven piles
in cohesionless soils (Kiefa, 1998).

Table 3. Hyperparameters of the models used in the training process

Models |
No. Hyper-parameters
REPT ANN GP CG-GP CG-ANN |
1 | Do not check capabilities FALSE FALSE FALSE FALSE FALSE
2 Initial Count 0 - - - -
3 Max depth -1 - - - -
4 Min variance prop 0.001 - - - -
5 No pruning FALSE - - - -
6 Filter type - - Normahze - -
training data
Kernel - - Poly Kernel - -
8 Num folds 3 - - 5 5
Concatenate predictions - - - TRUE TRUE
10 | Noise - - 1 - -
11 Keep original - - - TRUE TRUE
12 | Min num 2 - - - -
13 | Batch size 100 100 100 100 100
14 | Meta classifier i i i Gaussian Gaussian
processes processes
15 | Num execution slots - - - 1 1
16 | Seed 1 1 1 1 1
17 | Spread initial count FALSE - - - -
18 | Num decimal places 2 200 2 2 2
19 Debug FALSE FALSE FALSE FALSE FALSE
L . Approximate
20 Activation function - . . - - -
sigmoid
21 Loss function - Square error - - -
22 | Num function - 2 - - -
23 | Pool size - 1 - - -
24 | Tolerance - 0.0001 - - -
25 | Use CGD - FALSE - - -
26 | Ridge - 0.9 - - -
27 | Num threads - 1 - - -
28 | Use log odds - - - TRUE TRUE
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S REPT
* Training dataset: R* =0.818
' Linear Fit
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Figure 4. R? values of five models: (a) REPT; (b) ANN; (c) GP; (d) CG-GP, and (¢) CG-ANN
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Figure 5. Distribution of error values of the models: (a) training process and (b) testing process
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4. Conclusions

In building and bridge construction, PSCP
are commonly used to transfer the
superstructure's load to competent subsoil or
rock. Therefore, accurate and rapid prediction
of the total bearing capacity (TBC) of PSCP is
essential for safe, economical, and time-
efficient design and construction.
Conventional field tests, such as Pile Driving
Analyzer (PDA) tests, are specialized, time-
consuming, and costly. To address this
limitation, the present study applied three
individual ML models (REPT, GP, and ANN)
and two advanced hybrid models (CG-ANN
and CG-GP) to predict the TBC of PSCP
using 12 easily measurable physical and
physico-mechanical pile parameters.

The results of the statistical performance
evaluation demonstrated that the novel hybrid
CG-ANN model consistently outperformed all
other models, achieving the highest prediction
accuracy (R? = 0.935, RMSE = 44 tons,
MAE = 31 ton). This confirms the robustness
and effectiveness of the CG-ANN approach
for reliably estimating PSCP bearing capacity
with limited input data, thereby reducing
reliance on extensive field testing. The
findings highlight the practical applicability of

hybrid ML techniques in pile foundation
engineering.

Although the CG-ANN model showed
excellent performance in this study, its
application to diverse geological and site
conditions  with  larger  datasets is
recommended to enhance its generalization
capability. In addition, incorporating K-fold
cross-validation and refining input parameters
may further improve model reliability and
predictive performance. As machine learning
model development is a continuous process,
future studies may explore and compare
additional advanced algorithms to further
strengthen  prediction accuracy and
applicability.
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