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ABSTRACT

In this research, two newly hybrid machine learning (ML) models, including Decorate Ensemble-based Partial
Decision Trees (D-PART) and Bagging Ensemble-based Partial Decision Trees (B-PART), were applied to generate
an accurate landslide susceptibility map for the Muong Te area, Lai Chau Province, Vietnam. The performance of the
novel models was compared with two single benchmark models, namely Partial Decision Trees (PART) and Logistic
Regression (LR), using the popular area under the Receiver Operating Characteristic (ROC) curve (AUC) metric. To
construct the training and validation datasets, a spatial database was developed comprising ten landslide conditioning
factors associated with the area's topographic, geological, structural, and hydrological characteristics, along with 248
documented historical and recent landslide occurrences. The OneR technique was applied to prioritize the most
influential factors and to improve the model's performance. The evaluation results demonstrate that D-PART yielded
the strongest predictive performance, with an AUC of 0.801, followed by B-PART (0.795), PART (0.758), and
Logistic Regression (0.736). Thus, the novel hybrid model D-PART is a promising technique for constructing a
reliable landslide susceptibility map, which can be used for effective planning and management of landslides in
landslide-prone areas.

Keywords: Machine learning, landslide susceptibility, ensemble models, Partial Decision Trees, Decorate, PART,

Vietnam.

1. Introduction (Sameen et al.,, 2020; Prakash and Pham,
2024). Landslides cause substantial loss of life
and severe damage to property, infrastructure,
and disrupt communication all over the world.
Incidents of landslides have been increasing
over the last few decades due to development
activities and the effects of climate change.

Under the influence of gravity, rock
masses, soil, and other materials may move
downslope, a process commonly referred to as
a landslide (Anbalagan, 1992), resulting from
both natural and anthropogenic factors

Accurately predicting the timing of landslide
*Corresponding author, Email: damnd@utt.edu.vn occurrences remains highly challenging.
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However, areas with potential future landslide
occurrences can be identified and mapped
through systematic and comprehensive
analyses. By implementing appropriate
management strategies and methods, it is thus
possible to prevent landslides or reduce their
effects (Nohani et al., 2019).

Various techniques have been used for the
assessment of the susceptibility of landslides
in different countries, such as Algeria (Achour
et al., 2017; Achour and Pourghasemi, 2020;
Achour et al., 2021), Slovakia (Pham et al.,
2021b), and China (Chen et al., 2018), which
can be broadly classified into quantitative and
qualitative approaches. Qualitative
(knowledge-based) approaches, exemplified
by the Analytic Hierarchy Process (Anis et al.,
2019), and fuzzy hierarchical analysis, rely
primarily on expert judgment and are
consequently classified as subjective methods
(Yang et al., 2017b; Feizizadeh et al., 2014).
Quantitative methods employ numerical
techniques to evaluate the mathematical
relationships between past landslide events
and influencing factors; therefore, they are
commonly referred to as  objective
approaches. Within quantitative frameworks,
two main categories are recognized:
deterministic and statistical methods. Most of
these deterministic methods are effective but
not very accurate at predicting landslides, as
they do not account for the spatial
relationships among factors across large areas.
Conversely, statistical approaches such as the
Evidential Belief Function, Frequency Ratio,
Weight of Evidence (Bordbar et al., 2022;
Shahabi and Hashim, 2015), and logistic
regression (Nhu et al, 2020) evaluate
landslide susceptibility by examining the
spatial relationships between conditioning
factors and historical landslide occurrences. In
recent years, numerous studies have employed
advanced machine learning (ML) techniques
to explore landslide susceptibility, including

146

Adaptive NeuroFuzzy Inference System
(ANFIS), Incremental Generalized Model
(IGM), and Support Vector Machine (SVM)
(Chen et al., 2017a). Another investigation

employed alternative machine learning
algorithms, including Random Forest (RF),
Logistic  Model Tree (LMT), and

Classification And Regression Tree (CART),
for landslide susceptibility zoning and
validated them as excellent techniques for
landslide susceptibility mapping (Chen et al.,
2017c¢).

The primary objective of this study is to
assess the performance of two newly proposed
ensemble-based hybrid machine learning
models: Decorate ensemble-based Partial
Decision Trees (D-PART) and Bagging
ensemble-based Partial Decision Trees.
(B-PART) for mapping landslide
susceptibility in Muong Te area, Lai Chau,
Vietnam. In addition, two benchmark single
models, namely Partial Decision Trees
(PART) and Logistic Regression (LR), are
implemented for comparative assessment.
This study introduces, for the first time, the
use of D-PART and B-PART models for
landslide susceptibility analysis in the study
area, integrating a OneR-based feature
selection framework. The study further
evaluates model robustness using multiple
statistical indicators, including AUC, RMSE,
accuracy, sensitivity, and specificity, thereby
providing a comprehensive and reliable
assessment framework.

2. Study area

Covering an area of about 3,662 km?, the
study region is located in the Muong Te area
of Lai Chau Province, Vietnam (Fig. 1). It is
mainly mountainous terrain traversed by the
Da River and its tributaries. The area is
tectonically active and characterized by
complex geological structures, including the
Indosinian Fold Belt and the Song Da Rift
System. The Indosinian Fold Belt comprises a



Vietnam Journal of Earth Sciences, 48(1), 144—166

complex system of folded and faulted rock
units that developed from the Late Paleozoic
to the Early Mesozoic. These rocks consist
mainly of metamorphic and sedimentary
rocks, including schists, gneisses, phyllites,
quartzites, limestones, and sandstones. The
Song Da Rift System comprises a series of rift
basins formed during the Late Mesozoic to
Cenozoic period and characterized by thick
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sedimentary sequences. The regional rift
system includes the Red River Fault, a major
strike-slip structure extending along the
eastern margin of the province and a key
driver of the area's tectonic activity. The
complex geological structure of Lai Chau
Province has resulted in a diverse landscape
featuring high mountains, deep valleys, and
extensive river systems.
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Figure 1. Geographic location of the study area in Lai Chau Province, Vietnam

The climate of this area can be grouped
into two distinct seasons: Winter: cold, with
little rain; Summer: hot, humid, rainy. Every
year, the rainy season runs from the end of
April to October, coinciding with the
prevailing southwest wind. Rainfall in the
highlands is up to 3000 mm/year, while the
average across the mountain range ranges

from 2000 to 2500 mm. Low-lying mountains
and valleys receive rainfall of 1500 to
1800 mm. The dry season lasts from
November to March, with a small amount of
precipitation (316.8 mm) and long periods of
fog, which are likely to occur during this time.
The mean annual rainfall in the study area is
approximately 2,531 mm, with precipitation
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peaking in July and accounting for about
87.5% of the total. The average yearly
temperature is around 22°C.

3. Materials and methods

This study followed a multi-step
methodological ~ framework.  Firstly, a
landslide inventory of 248 past and present
landslide locations was collected. In addition,
as landslide susceptibility modeling represents
a binary classification task, 248 non-landslide
samples were identified to balance the dataset.
Of the total dataset, 70% of the landslide and
non-landslide samples were randomly selected
to construct the training dataset, while the
remaining 30% were reserved for validation.
The choice of a 70/30 split between the
training and validation datasets was guided by
the authors' experience and supported by
findings reported in the literature (Asadi
Nalivan et al., 2022; Mehrabi and Moayedi).
In the subsequent stage, ten thematic maps
representing landslide conditioning factors
were constructed to examine their spatial
relationships with landslide occurrences in the
study area. The OneR feature selection
algorithm was then applied to evaluate and
identify the most influential factors for model
development. Based on the selected features,
two hybrid models D-PART and B-PART,
and two single benchmark models, PART and
Logistic Regression (LR), were developed for
landslide susceptibility modeling. In this
framework, D-PART integrates the Decorate
ensemble technique with the PART classifier,
whereas B-PART combines Bagging with
PART. The performance of all models was
subsequently assessed and compared using
multiple validation metrics, including AUC,
ACC, SST, SPE, PPV, NPV, and RMSE.
Finally, landslide susceptibility maps were
generated based on the outputs of the
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developed models. All machine learning
models were implemented using the WEKA
machine learning software, and model
hyperparameters were optimized using a trial-
and-error approach based on predictive
performance and guidance from previous
studies.

3.1. Data used

3.1.1. Spatial locations of past landslides and
non-landslides

Ideal landslide inventory maps provide
essential details on the landslide location,
type, mode of movement, and underlying
causes and triggering factors (e.g.,
earthquakes, rapid snowmelt, and heavy
rainfall) (Althuwaynee et al., 2014). However,
in the present study, only the spatial locations
of historical landslides were utilized to
compile the landslide inventory for spatial
prediction within the study area. A total of
248 historical and recent landslide locations
were identified through interpretation of
Google Earth Pro imagery and field surveys
conducted under the Vietnam national project
(code: 01/2021/DX), entitled "Assessing the
Causes of Earthquakes in Muong Te on 16
June, 2020, and proposing solutions to reduce
the related risks". Most landslides are shallow,
triggered by rainfall and anthropogenic
activities such as road excavation. Figure 2
shows selected landslide photos of the study
area collected from the field survey. In
addition, non-landslide locations were
selected from areas with no recorded history
of landslide occurrences. Accordingly, 248
non-landslide sites were identified to
complement the landslide inventory.
Landslide and the non-landslide regions were
demarcated by creating buffer zones around
landslide  areas, taking into account
topographical and geo-environmental factors.
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Figure 2. Photos of landslides identified from fieldwork (Photo source: Tran Van Phong)

3.1.2. Factors affecting landslides

Beyond the inventory of past and present
landslides, conditioning factors are essential
components in assessing landslide
susceptibility. Given the geological and geo-
environmental conditions of the study area,
ten landslide affecting factors namely,
geology, elevation (m), slope (degree),
curvature, aspect, Topographic Wetness Index
(TWI), river density (km/km?), fault density
(km/km?), land cover, and Stream Power
Index (SPI) were identified as contributors to
landslide occurrence in this area. More
specifically, elevation indirectly exerts a
decisive influence on landslide occurrence by
controlling related factors such as rainfall
distribution, temperature variability, and both
physical and chemical weathering (Yufeng
and Fengxiang, 2009). Slope degree is one of
the most important topographic parameters in
landslide control; for this reason, it has been
used in almost all landslide studies (Garcia-
Rodriguez and Malpica, 2010). Curvature
shows the morphological and topographic

curvature of the area (Silhan, 2021). The
effect of surface curvature on erosion due to
water flow, and thus on the occurrence of
landslides. Concave surfaces are more
vulnerable to landslides due to water
accumulation (Ercanoglu and Gokceoglu,
2002). The negative values indicate surface
concavity, positive values indicate convexity,
and zero values indicate surface smoothness
(Ercanoglu and Gokceoglu, 2002). The
direction of the slope is important for the
sliding of rock/ground mass (Hong et al.,
2017); thus, aspect is an important factor, as it
affects the wetness of the ground due to the
direction of sunlight, wind, and rainfall (Hong
et al., 2017). Soil moisture and surface
saturation are indicators of TWI, which can
affect slope stability (Tien Bui et al., 2016;
Wang et al., 2020). SPI indicates the stream's
erosion capacity, which is directly related to
slope and watershed area. Therefore, when
surface flow velocity increases due to SPI-
eroded terrain, the likelihood of mass
movements increases. River density is one of
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the controlling factors in slope stability
(Schlogel et al., 2018). Faults are tectonic
breaks that create sliding planes and form
rock blocks. Direction, orientation, and nature
of faults play essential roles in landslide
activity. Thus, a fault density map was
created, which is also considered one of the
important landslide affecting factors (Chen et
al., 2017b; Xu et al., 2012). Geology is one of
the most important parameters in the study of
landslides because different rock units exhibit
varying degrees of susceptibility to landslides
due to their mineralogy, weathering
characteristics, and permeability (Xu et al.,
2012; Zhuang et al., 2015; Prakash and Pham,
2023). In addition, land cover plays an
essential role in slope stability, as bare ground
is more prone to landslides than vegetation-
covered areas (Abernethy and Rutherfurd,
2001).

In the present study, thematic maps of the
influencing parameters were compiled from

various sources. More specifically,
topographical factors such as elevation (m),
slope (degrees), curvature, aspect, TWI, and
SPI were obtained by geoprocessing a Digital
Elevation Model (DEM) with a spatial
resolution of 12.5 m, extracted from the
Alaska Satellite Facility database
(https://asf.alaska.edu). Other factors, such as
river density (km/km?) and fault density
(km/km?), were derived from the map of major
rivers  (https://www.diva-gis.org/gdata). In
contrast, the fault map was extracted from the
geological map of the area (General
Department of Geology of Vietnam). River
density was prepared using the river layers
extracted from the DEM (Schlogel et al.,
2018). A geological map was obtained from
the General Department of Geology of
Vietnam, showing the geological groups (Table
1). The land cover map was collected from
ESRI (https://livingatlas.arcgis.com/landcover/)

(Fig. 3).

Table 1. Characteristics of the geological Groups of the study area

No | Symbols Characteristics
1 Gl Quaternary: pebble, granule, sand, silty clay
2 G2 Dien Bien complex, phase 1: gabbro, gabbro
3 G3 Dien Bien complex, phase 3: granite, spessartite, porphyritic diorite
4 G4 Dien Bien complex, phase 3: biotite-hornblend granite
5 G5 Dien Bien complex, phase 2: granodiorite, diorite quartz
6 G6 Siltstone, silty sandstone, thin layers of coaly shale
7 G7 Dien Bien Complex, phase 3: granite; dyke phase: fine-grained granite, spessartite, and
porphyritic diorite
8 G8 Lamprophyr
9 G9 Middle Song Da formation: tuff, basalt, andesite, and ryolite
Lower Song Da formation: pebbles, grits, sandstones, quartzite siltstones, siliceous schist,
10 G10 shale, thin-layer or lenticular limestone, andesitobasalt, andesite, dacite, ryolite, felsite, and
their tuffs
11 Gl1 Lower Subformation: conglomerate, gritstone, sandstone, siltstone, marl
12 G12 Phu Si Lung complex, phase 3: granite biotite, granite 2 mica
13 G13 Phu Si Lung complex, phase 2: small-grained leucocratic biotite granite, two-mica granite
14 Gla Phu Si Lung Corpplex, phase 1: me_lanocratic granite, porphyritic biotite granite, and
compressed medium- to coarse-grained two-mica granite
15 G15 Granite biotite, granit 2 mica
16 G16 Phu Si Lung complex, phase 3: porphyritic biotite granite and two-mica granite
17 G17 Nam Man formation: Conglomerate, gritstone, sandstone, chocolate siltstone, and claystone
13 GIg Clay shale, sericitied clay shale, sandstone interbedded with quartzitic sandstone, marl,
limestone
19 G19 Dien Bien complex, phase 3: biotite-hornblend granite
20 G20 Dien Bien complex, phase 1: granodiorite, diorite
21 G21 Quartz sandstone, clay shale, marl, a little conglomerate, and gritstone
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Figure 3. Conditioning factors used in this study: (a) slope, (b) curvature, (c) fault density,
(d) river density, (e) elevation, (f) aspect, (g) SPI, (h) TWI, (i) land cover, and (j) geology
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Figure 3. Cont.

3.2. Methods used
3.2.1. Partial Decision Trees (PART)

The decision tree algorithm is among the
most widely used techniques in data mining.
In data mining, a decision tree is an ML
model that can be used for both regression and
classification. It is one of the most widely
used tools and techniques in data mining
(Exarchos et al., 2012), especially when data
volumes are very high (Dumitrescu et al.,
2022). PART is a partial decision tree over all
current samples, and the leaf with the highest
coverage is selected for the new rule. Then,
the partial decision tree is removed,
preventing the initial generalization (Dauda et
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al., 2019). The steps for performing the
algorithm are described in the work by Luu et
al. (2021). The PART algorithm combines
C4.5 and RIPPER classification models. It is
worth noting that partial decision trees and
association rules are effective and reliable
decision-making techniques, providing a
simple, interpretable representation of the
extracted knowledge while achieving high
classification accuracy.

In contrast to traditional decision tree
models, the rule-based model generated by
this kind of analysis can be easily interpreted
by professionals without requiring specialized
statistical knowledge. Additionally, like other
conventional decision tree algorithms, the



Vietnam Journal of Earth Sciences, 48(1), 144—166

PART model can analyze very high-
dimensional feature spaces (Berger et al.,
2006). PART was selected in this study in
view of its advantage over other algorithms.
In this algorithm, causal relationships between
variables are analyzed using the direct relation
matrix (Kareem and Jasim, 2022). This is one
of the main reasons why the PART algorithm
is preferred.

3.2.2. Decorate ensemble

Decorate is formed by a powerful learner
with high precision on the training dataset. It
creates a diverse and effective group in a
simple framework (Nikmanesh et al., 2022).
In this way, when creating new groups,
different random samples are added to the
training set. To these artificially created new
specimens, a classification label is then
assigned (Lei et al., 2019). The Decorate
algorithm is particularly effective in several
aspects: it reduces the number of required
training samples while maintaining model
accuracy, leverages unlabeled data to enhance
performance  within a  semi-supervised
learning framework, and integrates active and
semi-supervised learning strategies to achieve
improved predictive accuracy (Sopha et al.,
2022). Unlabeled classification is performed
in such a way that each class provides a base
classifier (Ci) in the set of probabilities C for
class x. If P¢; y (x) is the probability that
example x belongs to class Y with respect to
the classifier Ci, the likelihood of being in
each class for the whole set is calculated. In
this work, Decorate was applied as an
ensemble optimization method with PART as
the base classifier for landslide susceptibility
modeling.

3.2.3. Bagging Ensemble

Breiman (1996) has used the concept of
Bootstrap Aggregating to create various
estimates. This technique assumes that trained
data is available for a community and that
simulated scenarios are generated from this

data. Therefore, resampling will provide the
required diversity by using different datasets,
and when a new sample is presented to each
classifier, a majority vote is used to identify the
class (Akila and Srinivasulu Reddy, 2018).
Pasting is a Bagging method generally
designed for large data sets. These datasets are
split into smaller subsets for training the
various classifiers. In this case, there are two
types of random voting and importance voting:
the first generates the first set of subsets
randomly, and the second generates the second
set in consecutive order based on the
importance of these instances. Important
examples are those that increase dataset
diversity (Wu et al., 2018). The method relies
on a weak and rigid data distribution to
construct the dataset. Out-of-bag classifiers
identify difficult instances; an instance is
considered "hard" if it is misclassified by the
ensemble (Yang et al., 2017a). These hard
instances are consistently incorporated into
subsequent datasets, whereas easier instances
are less likely to be included (He et al., 2022).
In this work, Bagging was applied as an
ensemble optimization method, with PART
serving as the core classifier, for landslide
susceptibility modeling.

3.2.4. Logistic Regression (LR)

LR aims to show how quantitative or
qualitative  variables impact a two-
dimensional (two-tier) dependent variable
(Nibbering and Hastie, 2022). Unlike linear
regression, which uses a small dependent
variable, logistic regression uses a qualitative,
two-dimensional dependent variable (Peng
and Lu, 2021). In LR, qualitative independent
variables must either be two-dimensional or
treated as two-dimensional apparent variables
(Ghazvini et al., 2019). In the LR method, a
function called "Logistic Function" is used.
For this reason, this regression method is
called logistic regression (Donnelly and
Verkuilen, 2017). In this study, Logistic
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Regression (LR) was chosen as a benchmark
single-machine learning model for
comparison with hybrid models in landslide
susceptibility mapping.

3.2.5. Validation indicators

The receiver operating characteristic (ROC)
curve is plotted as a function of the actual
positive rate and false positive rate (Schechter
et al., 2010; Van Quang et al., 2025; Hai et al.,
2022). The area under this curve, called the
AUC, is often used for quantitative evaluation
of classification models (Freyer et al., 2001;
Prakash et al., 2024; Xuan et al., 2024). Values
of AUC range from 0.5 to 1, with 0.5
indicating low performance and 1 indicating
perfect performance.

SPE (Specificity) is the fraction of
negative responses that are correctly detected,
such as the percentage of landslides that do
not exist as predicted by the model (Eckley
and Tangerina, 2021). SST (Sensitivity) is the
fraction of positive responses that are
correctly detected, such as the percentage of
landslides that occur according to the model
prediction (Yin and Tian, 2014). ACC
(Accuracy) means how close the measured
value is to the actual value. High bias and
variance mean low accuracy (Jablonski,
2020). PPV (Positive Predictive Value) is the
ratio of correctly selected positive cases to the
total number of  positive cases
(Lewandrowski, 2019). NPV (Negative
Predictive Value) means the proportion of
negative landslides that are correctly labeled
as non-landslide (Duncan et al., 2020). RMSE
(Root Mean Square Error) is a metric that
quantifies the difference between the
predicted and actual values (Schubert et al.,
2017; Nguyen et al., 2023; Vu et al., 2021).
The equations for the criteria are described in
published works (Nhu et al., 2020; Phong et
al., 2021). Model performance improves with
increasing SPE, SST, ACC, PPV, and NPV,
while lower RMSE indicates greater accuracy
(Luu et al., 2022).
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McNemar's test was also used to evaluate
the statistical significance of the difference
between the models in this study. It is based
on the null hypothesis that the difference
between the models is not statistically
significant, corresponding to a p-value of 0.05
(Kavzoglu, 2017). In this case, the p-value is
smaller than 0.05, the null-hypothesis is
rejected, and vice versa. McNemar's test is
used to determine the statistical significance
of differences between classifiers
(Lachenbruch, 2014).

3.2.6. OneR feature selection

OneR is regarded as a crucial step in
landslide susceptibility modeling (Pham et al.,
2021a). To accomplish this objective, subsets
of the population are selected that are more
likely to affect future predictions of events
such as landslides. Known formally as "One
Rule", OneR is an algorithm for creating
precise classifications of data structures
(Dung et al., 2021). It generates a rule for
each anticipant in the data, then chooses the
rule that produces the smallest error as its
"Rule" for further classifications (Zia et al.,
2015). A set of input variables is selected
before the output variable is chosen based on
the statistical relationship between them. The
algorithm seeks a simple rule that applies to
all factors by assigning each factor's value to
the majority class (Gnana et al., 2016).
Following the evaluation of rule accuracy,
factors are assessed and ordered by their
Average Merit (AM) index, which reflects the
quality of the generated rules and indicates the
quality of the corresponding rule.

4. Results and discussion
4.1. Evaluation of feature importance

In machine learning, feature selection
techniques are employed to enhance
algorithmic predictive power by retaining the
most significant variables while discarding
those that are non-informative. In the present
study, the importance of Ilandslide
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conditioning factors was evaluated using the
OneR feature selection method, as shown in
Fig. 4. It can be observed that although all
conditioning factors contribute to modeling
landslide susceptibility. Still, the two factors,
namely elevation (AM = 69.540) and river
density (AM = 67.816), have the first and
second highest importance among the factors.
It is reasonable, as the elevation of an area can
significantly influence the occurrence and
frequency of landslides. Specifically, regions
with moderate to steep slopes and high
elevations are more susceptible to landslides,
whereas areas with gentle slopes and lower
elevations are less susceptible. This is because
high elevations often have steeper slopes and
are more prone to gravity- and water-driven
erosion, which can destabilize soil and rock
formations, leading to landslides.
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Figure 4. Feature importance of conditioning
factors determined by OneR

Furthermore, river density plays a
significant role in landslide susceptibility,
with regions exhibiting high river density
tending to experience more frequent
landslides. This is because rivers can erode
and destabilize slopes, particularly when the
slopes are composed of loose or weak rock
formations. The flow of water in a river can
saturate the soil and rock, weakening their
cohesion and increasing the risk of landslides.
Moreover, soil moisture can reduce friction
between soil particles, facilitating slope
failure and downslope movement. Overall, the

ten conditioning factors were carefully
selected to predict landslide susceptibility in
this study.

Here, we note that in the present study, we
have not considered factors such as soil type,
roads, NDVI, or rainfall. The reason is that
roads are an essential feature, and most
landslides occur along roads; thus, road
excavation can be  considered an
anthropogenic triggering factor of instability
in the rock mass. Similarly, rainfall acts as a
natural trigger, as most landslides occur
during the rainy season. We were unable to
obtain a detailed soil-type map of the area, so
we have not included it in this study.
Moreover, we require a detailed soil map
showing surface and subsurface geotechnical
information for landslide studies, which is
difficult to obtain at the regional scale. The
NDVI factor has not been considered, as the
study area is covered with dense vegetation.
However, these parameters will be considered
in future studies on availability.

4.2. Models' training and evaluation

The model's training process began with
selecting the hyperparameters for each
method. In this process, we used a trial-and-
error approach to optimize and select the
hyperparameters for each model. Table 2
shows the chosen hyperparameters for
training the models.

Validation results demonstrate that all
models achieved acceptable predictive
performance; however, the hybrid models
consistently outperformed the single models.
In particular, the D-PART model showed the
highest predictive capability on the validation
dataset (AUC = 0.801), followed by B-PART
(AUC = 0.795), PART (AUC = 0.758), and
LR (AUC = 0.736). The superior performance
of the ensemble-based models highlights the
effectiveness of Decorate and Bagging
techniques in reducing model variance and
improving generalization ability (Figs. 5, 6,
and 7).
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Table 2. Hyperparameter settings of machine learning models used in this research

No Hyperparameters Model
LR PART D-PART B-PART
1 Batch Size 100 100 100 100
2 The maximum number of iterations allowed -1 - - -
3 Number of Decimal Places 4 2 2 2
4 Ridge 1.00E-08 - - -
5 Confidence Factor - 0.25 - -
6 Minimum number of instances per rule - 2 - -
7 Number of Folds - 3
8 Seed - 1 1 1
9 Artificial Size - - 1 -
10 Desired Size - 15 -
11 Number of Iterations - - 50 10
12 Bag Size Percent - - - 100
13 Number of Execution Slots - - - 1
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Figure 7. AUC-ROC of the models during (a) the training phase and (b) the validation phase

In general, the models developed and
applied in this study exhibited satisfactory
performance in predicting and mapping
landslide susceptibility, but D-PART and
B-PART is better compared with other models
(PART and LR), and D-PART is slightly
better than B-PART. It is reasonable, as both
D-PART and B-PART used Decorate-and-
Bagging ensembles to optimize the training
dataset for classification. More specifically,

the
(i) it can generate diversity by training
multiple base models with different learning

advantages of  Decorate are

algorithms, initializations, and/or subsets of
the training data; thus, it helps to reduce
overfitting and improves generalization, (ii) it
is more robust to noise and outliers in the data
as the other models in the ensemble can
compensate for the errors made by one model,
(iii) it is easy to scale up to handle large
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datasets and complex models as it is built by
training multiple base models in parallel,
which can be distributed across multiple
machines. In the case of Bagging, it reduces
variance by generating multiple bootstrap
samples of the training data and training each
base model on a different sample; thus, it
helps reduce the effects of overfitting and
improve the generalization performance of the
predictor. In addition, it is more robust to
changes in the training data or model
parameters; thus, it is less likely to suffer from
underfitting,  or
predictions. In this work, LR performed worst

overfitting, unstable
among the models, as one of its weaknesses is
that solve nonlinear problems
because the decision boundary is linear (Reed
and Wu, 2013).

To further assess whether the observed

it cannot

differences in predictive performance among
statistically  significant,
was  applied.  The
corresponding p-values for pairwise model

the models are
McNemar's  test
comparisons on the training and validation
datasets are presented in Tables 3 and 4,
respectively. The results reveal that the
performance differences between the hybrid
ensemble models and the single models are
statistically significant (p < 0.05) in most
comparisons, particularly between D-PART
and LR, and between D-PART and PART.
Conversely, the differences between D-PART
and B-PART are not statistically significant
(p > 0.05), indicating that both ensemble-
based models perform comparably. However,
D-PART consistently achieves slightly higher
predictive accuracy.
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Table 3. P-values of McNemar's test of the models
(training dataset)

Models LR | PART | B-PART | D-PART
LR 0.0031 1 0.53
PART 0.0031 0.0002 0.0001
B-PART 1 0.0002 0.39
D-PART | 0.53 | 0.0001 0.39

Table 4. P-values of McNemar's test of the models
(validation dataset)

Models LR | PART | B-PART | D-PART
LR 0.0275 1 0.2478
PART 0.0275 0.0113 0.0001
B-PART 1 0.0113 0.1796
D-PART | 0.2478 | 0.0001 0.1796

4.3. Landslide susceptibility mapping

Using LR, PART, B-PART, and D-PART,
landslide susceptibility maps were constructed
(Fig. 9). As a first step, the susceptibility
index was computed for every pixel across the
study region during model wvalidation.
Thereafter, these indices were classified into
five intervals using the Natural Breaks
method, which is based on natural breaks in
the data distribution (Mehrabi, 2021). Finally,
landslide susceptibility maps were constructed
with five classes (very high, high, moderate,
low, and very low) corresponding to five
classified intervals (Fig. 8). To validate the
performance of the susceptibility maps,
Frequency Ratio (FR) analysis was carried out
on each susceptibility class of the maps. It is
the ratio of the percentage of landslide or non-
landslide pixels to the rate of susceptibility-
class pixels. Results of the FR analysis are
shown in Fig. 9. It can be seen that in the map
generated by LR, the FR value is 2.09 in the
very high class, followed by high (1.30),
moderate (0.47), low (0.28), and very low
(0.11), respectively. For the map generated by
PART, the FR value is highest in the high
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(3.15) and very high (3.14) categories,
followed by moderate (1.57), low (0.42), and
very low (0.20). According to the map
generated by B-PART, the highest FR value is
very high (3.77), followed by high (2.53),
moderate (0.77), low (0.42), and very low
(0.17). According to the map generated by D-
PART, the highest FR value is very high

(6.22), followed by high (3.71), moderate
(1.31), low (0.50), and very low (0.11),
respectively. In general, the frequency ratio
(FR) is highest in areas classified as high and
very high susceptibility across all maps,
indicating that the landslide susceptibility
maps generated by each model are reliable for
practical susceptibility prediction.
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Figure 9. Frequency ratio (FR) analysis of the susceptibility maps

(LS: landslides and Non-LS: Non-landslides, LSC: Landslide susceptibility classes)

5. Concluding Remarks

Creating accurate landslide susceptibility
maps of landslide-prone areas is a valuable
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task for landslide hazard and risk
management, not only in hilly regions of
Vietnam but also worldwide. There are
several ML models available for this task, but
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it is desirable to continue exploring the
development of new hybrid models to
accurately predict landslide-susceptible zones.
With this objective, we have developed two
novel models, D-PART and B-PART, for
landslide susceptibility mapping in the Muong
Te area, Lai Chau province, Vietnam,
considering 10 landslide-affecting factors.
OneR feature selection analysis indicated that
all conditioning factors contribute to the
modeling of landslide susceptibility. Still, the
two features, namely elevation (AM =
69.5402) and river density (AM = 67.8161),
are the most important factors in this area.

Although the proposed models
demonstrate strong predictive performance,
certain limitations should be acknowledged.
Some potentially important triggering factors,
such as rainfall intensity, detailed soil
properties, road proximity, and vegetation
indices (NDVI), could not be included due to
data unavailability at the regional scale.
Future studies may integrate these factors,
apply the proposed hybrid models across
different geomorphological settings, and
explore additional ensemble or deep learning
approaches to further enhance landslide
susceptibility prediction.

Overall, this study confirms that ensemble-
based hybrid machine learning models,
particularly D-PART, provide improved
predictive accuracy compared to conventional
single models. The proposed methodology is
transferable and can be effectively applied to
other landslide-prone mountainous regions,

provided appropriate local conditioning
factors are selected.
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