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ABSTRACT

Bathymetry mapping plays a critical role in coastal zone management, marine conservation, and navigation safety.
With the increasing availability of high-resolution satellite imagery, such as PlanetScope (3—5 m), remote sensing-based
bathymetry retrieval offers a cost-effective and scalable alternative to traditional in-situ surveys. This study explores the
capability of PlanetScope imagery to retrieve a wide range of bathymetry (-0.5 — ~ -40 m) in the southern area of the
Nha Trang Marine Protected Area (MPA), Vietnam - an ecologically significant and dynamic coastal region. We
conduct a comprehensive comparison between traditional approaches, including the Stumpf ratio model and Multiple
Linear Regression (MLR), and a suite of advanced machine learning (ML) algorithms, including Random Forest (RF),
Support Vector Machine (SVM), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGB),
CatBoost (CB), and Gradient Boosting (GB). Among these, RF achieved the highest performance with an R of 0.85,
RMSE of 2.66 m, and MAE of 1.85 m, significantly outperforming the Stumpf model (R*= 0.29) and MLR (R*= 0.57).
This study represents one of the most extensive model comparisons to date for satellite-derived bathymetry using
PlanetScope data, offering a benchmark for future applications in tropical coastal environments. Results underscore the
potential of machine learning to advance spatially detailed and accurate bathymetric mapping from space.

Keywords: PlanetScope, Nha Trang MPA, bathymetry, machine learning.

1. Introduction for coastal zone management, marine habitat

Bathymetric mapping is a fundamental tool conservation, ~and  navigational  safety.

Traditional depth measurement methods,

whether shipborne echo sounder or airborne
*Corresponding author, Email: nguyentrinhduchieu@gmail.com; . . . ..
hanamthang@hueuni.edu.vn LiDAR, can achieve high positional and depth
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accuracy. LiDAR-based bathymetry, as an
emerging  technology, provides high-
resolution, precise depth measurements using
airborne laser pulses that can penetrate clear
coastal waters, making it particularly valuable
for mapping shallow and nearshore zones with
complex bottom structures (Kujawa &
Remondino, 2025). However, their spatial
coverage is limited, and their application over
large or remote areas is often constrained by
high operational costs, safety risks, restricted
survey extents, and logistical challenges (Gabr
et al.,, 2020; Kalybekova, 2025; Liu et al.,
2024). Many shallow coastal environments
still rely on outdated or sparsely distributed
bathymetric information from previously
published nautical charts. Shipborne acoustic
techniques, in the form of single- or multi-
beam echo sounders, require specialized
equipment and trained personnel and are
further restricted by vessel draft and safe
navigation zones (Giilher & Alganci, 2023b).
Recent advances in satellite remote sensing
have demonstrated significant potential to
address these challenges by providing
spatially extensive and temporally frequent
observations of shallow coastal waters.
Satellite-derived ~ bathymetry (SDB), in
particular, has emerged as a rapid, cost-
effective, and globally scalable approach for
generating high-resolution seafloor
topography.  Satellite-derived  bathymetry
(SDB) benefits from both multispectral and

hyperspectral imagery, each contributing
unique  strengths to depth  retrieval.
Multispectral ~ sensors  (e.g.,  Sentinel-2,

PlanetScope) offer frequent coverage and
suitable spectral bands for optical depth
estimation, making them effective for large-
area, operational mapping (He et al., 2024).
Hyperspectral sensors, in addition, provide
hundreds of narrow bands that improve water-
column  correction and  bottom-type
discrimination, thereby increasing depth-
retrieval accuracy in an optically complex
environment (Ye et al, 2025). These data
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sources allow SDB to complement traditional
hydrographic surveys by expanding spatial
coverage and increasing temporal update
capacity (Hodul et al, 2018). With its
advantages and growing maturity, SDB is
increasingly recognized as a promising tool
for modern bathymetric mapping and coastal
zone management (Giilher & Alganci, 2023b).
Various satellite-derived bathymetry methods
are currently available, with their accuracy
influenced by factors including algorithm
performance, spectral band selection, and
sample distribution (Chu et al., 2023). A
chronological review of empirical SDB
studies reveals a clear evolution in
methodological approaches. Early work in the
late 20™ century relied on foundational
techniques, including the physics-based
models of Lyzenga (1978) and Lyzenga et al.
(2006), as well as semi-empirical approaches
derived from the Depth of Penetration (DOP)
concept, which established the optical basis
for relating radiance attenuation to depth.
Subsequent studies increasingly adopted
simplified empirical methods, most notably
linear or logarithmic band-ratio algorithms
(Stumpf et al., 2003), to estimate depth from
multispectral imagery, thereby improving
robustness and  reducing  calibration
requirements. In recent years, however, there
has been a marked transition toward machine
learning and deep learning techniques, driven
by their superior capability to model complex
data relationships and their potential to deliver
higher accuracy (Liu et al., 2024).

Machine learning (ML), a branch of
artificial intelligence, utilizes historical data to
improve prediction and decision-making. Its
strength in handling large datasets from
satellite and remote sensing imagery has led
to widespread use in classification and
regression tasks. In recent years, machine
learning techniques have gained increasing
attention for SDB applications due to their
potential for high accuracy and broad

applicability. Moeinkhah et al. (2019) applied
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the Random Forest (RF) model to
Landsat-8 data and achieved low error
(RMSE = 1253 m, MAE = 0.766 m) in
shallow waters (< 5 m), though errors
increased significantly beyond 10 m depth.
Eugenio et al. (2021) conducted a
comprehensive comparison of nine regression
and machine learning models using
WorldView-2/3 imagery, including linear
Stumpf, quadratic Stumpf, Sigmoid, linear
Support Vector Machine (SVM), Gaussian
SVM, K-Nearest Neighbors (KNN), Decision
Tree (DT), Bagged Tree, and Subspace KNN.
Their results showed that ensemble methods
such as Bagged Tree performed best, especially
in deeper waters up to 35 m, with an average
RMSE of around 2 m. Liu et al. (2024)
compared the performance of machine learning
models (Gradient Boosting Machine (GBM)
and Neural Network) with traditional methods
(log-linear and Stumpf) using Sentinel-2
imagery over Hainan Island, China.
The GBM achieved the highest accuracy
(RMSE = 0.59 m), though errors increased in
deeper waters (> 9 m) compared to shallower
areas (< 3 m). Ashphaq et al. (2024) evaluated
various regression techniques for SDB using
Sentinel-2 imagery, including traditional
multiple linear regression and ML models such
as SVM, Gaussian Process (GP), DT, KNN, k-
fold DT, and RF. Their findings demonstrated
that machine learning models - especially GP
and RF - outperformed traditional approaches,
with R? values up to 0.97 and RMSE of 1.23 m.
Tran et al. (2024) tested six ML models (RF,
SVM, CatBoost (CB), Extreme Gradient
Boosting (XGB), Light Gradient Boosting
Machine (LGBM), KTBoost) on Landsat 9
imagery over a shallow, turbid lagoon. These
models were evaluated both with and without
meta-heuristic optimization (Dragon Fly,
Particle Swarm Optimization, Grey Wolf
Optimization). LGBM with Particle Swarm
Optimization achieved the highest performance
(R? = 0.908, RMSE = 0.31 m), demonstrating
the effectiveness of combining feature

selection with machine learning in complex
environments. Nguyen et al. (2025) compared
empirical models (Stumpf, MLR) with five
nonlinear ML models (RF, SVM, CB, XGB,
LGBM) to model the water depth from
Sentinel-2 imagery in the highly dynamic
coastal zone of Hasaki, Japan. Their analysis
revealed that CB achieved the
best results (R? = 0.84-0.92, RMSE < 0.5 m in
shallow waters < 7 m), with ML models
generally outperforming empirical models,
especially in turbid and dynamic coastal
conditions. In Vietnam, machine learning has
been increasingly applied across various
research domains, including investigations into
the relationship between landslide
susceptibility and land-cover change (Huu et
al., 2024) and multi-step-ahead water-level
prediction to  support  water-resources
management in the Mekong Delta (Duc et al.,
2024).

Open-access datasets from Landsat (30 m
resolution) and Sentinel-2 (10 m resolution)
have been widely adopted in SDB research
(Ashphaq et al., 2021). By comparison,
PlanetScope satellites deliver significantly
finer spatial resolution of 3 m, along with
eight spectral bands and an almost daily
revisit cycle. This combination enables
detailed detection of small-scale underwater
features far beyond the capabilities of
Landsat's 30 m resolution (Kalybekova,
2025). The ability to capture near-daily
imagery makes PlanetScope especially
valuable for monitoring dynamic coastal
environments where conditions can change
rapidly. PlanetScope satellite imagery has
proven effective for shallow-water bathymetry
estimation. In Egypt, Gabr et al. (2020)
demonstrated that the Stumpf algorithm
performed well with PlanetScope imagery,
achieving an RMSE of 0.38 m. Li et al. (2019)
developed an adaptive algorithm applied to

Planet Dove imagery. They validated it across
five coral reef areas using 61,025 in-situ
depth records, yielding RMSE values of
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1.22-1.86m, with the highest accuracy
observed within the 4-10m depth range.
Sesama et al. (2020) employed PlanetScope
data over the Karimunjawa Islands and
reported an R? of 0.6952 and RMSE of 2.85 m
for depths up to 20m. Wulandari and
Wicaksono (2021) confirmed the high
accuracy of the blue/green band ratio method
in waters shallower than 10m. Tatsuyuki
Sagawa et al. (2023) emphasized that, while
SDB is a valuable tool for coastal research
and management, accuracy remains a
significant challenge. Using PlanetScope
imagery with machine learning algorithms,
including RF and Deep Neural Networks,
they demonstrated that SDB performance
improves by incorporating neighboring-pixel
information, increasing the number of spectral
bands, and selecting suitable training data.
Their model achieved RMSEs of 0.5-0.9 m
(0-10 m depth) and 1-1.4 m (0-20 m depth),
highlighting the strong potential of SDB in
complex coastal environments. More recently,
Khakhim et al. (2024) assessed the potential
of newly available spectral bands, such as
Coastal Blue and Coastal Yellow, achieving
an R? of 0.47. Downes et al. (2025)
demonstrated that selecting an optimal
spectral band combination can significantly
improve  depth-retrieval accuracy from
PlanetScope imagery. Their results showed
that a multi-band linear regression model
substantially outperformed the conventional
band-ratio method, yielding a high coefficient
of determination (R? = 0.94) and a low root-
mean-square error (RMSE = 0.41 m). The
model was most effective within the 0.5-5 m
depth range, with slightly increased error at
greater depths. These findings underscore the
potential of combining high-resolution optical
sensors with machine learning techniques to
enhance coastal bathymetric mapping in
complex shallow-water habitats. Overall,
these studies demonstrate that PlanetScope
imagery represents a reliable and effective
data source for shallow-water bathymetric

mapping.
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Despite significant advances in SDB,
studies that integrate PlanetScope imagery
with ML techniques to estimate depths
beyond 20 m remain limited. Most remote
sensing research in marine protected areas has
concentrated on clear-water atolls (Bertin et
al., 2022; Li et al., 2023), with few validations
in sediment-influenced environments such as
Nha Trang Bay. The bay is affected by
continental sediment discharge (Tkachenko,
2015) and ongoing construction on nearby
islands (Tkachenko, 2023), emphasizing the
urgent need for focused bathymetric
investigations in this area. To address this
gap, the present study validates a
straightforward,  practical yet reliable
approach for estimating bathymetry in the
southern area of the Nha Trang Marine
Protected Area by integrating PlanetScope
imagery and state-of-the-art learning methods.

Our work serves as the first advanced
comparison of multiple ML models (RF,
SVM, CatBoost, XGB, LGBM, GB) and
traditional methods (MLR, Stumpf) using
8-band PlanetScope imagery for high-
resolution bathymetry in a coral-rich tropical
setting and optically complex Case-2 turbid
waters. The sensor's meter-scale resolution
and additional mid-visible bands (Green-2,
Yellow) offer improved sensitivity to bottom-
water interactions that are not well captured
by standard RGB-type systems. Our results
also provide initial operational evidence that
depth retrieval can extend to 30-40 m,
exceeding the ~25 m theoretical optical limit
typically cited for such waters. While
uncertainties naturally increase with depth,
this highlights the combined value of
expanded spectral information and modern
ML algorithms. The demonstrated
performance suggests strong potential for
applying this framework to other complex
coastal systems globally.
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2. Material and methodology
2.1. Study site

Nha Trang Bay Marine Protected Area
(MPA), located in Khanh Hoa Province along
Vietnam's central coast, is the country's
largest  designated  multi-use  coastal
conservation zone (Fig. 1). Encompassing
around 160 km?, the MPA was established in
2002 with the primary goal of preserving
coral reefs and benthic habitats that define the
region's ecological richness. The bay opens
into the East Sea and includes a cluster of nine
islands, seven of which fall within the scope
of this study. The study area is located in the
southern part of the Nha Trang Bay MPA. A
diverse and complex seafloor morphology
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characterizes Nha Trang Bay; in particular,
the southern sector is strongly influenced by
the spatial fragmentation created by a system
of islands, including Hon Mun, Hon Tam,
Hon Mot, Hon Mieu, and Hon Tre. Among
them, Hon Tre Island - the largest - acts as a
natural barrier dividing the bay into northern
and southern zones. Historically, up until the
1990s, Nha Trang Bay was recognized as one
of Vietnam's most biologically diverse marine
systems, harboring over 250 hard coral
species across 60 genera (Britaev et al., 2017).
Its ecological significance links it to the
Western Pacific Coral Triangle, a globally
renowned hotspot of coral biodiversity and
evolutionary origin for Indo-Pacific coral
species.
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Figure 1. The southern area of the Nha Trang Marine Protected Area

The tides in Nha Trang Bay are irregular
diurnal, with low tides varying seasonally

(October-March in the morning, April-
September in the afternoon, September-
October at mnoon, and March-April at

midnight), with the strongest tides in June-
July and November-December (An et al,
2007). The southern Nha Trang MPA is
influenced by both reef systems and

continental sediment inputs from small rivers
and coastal runoff, producing spatially
heterogeneous optical conditions (i.e., a
mixture of optically complex waters). In bio-
optical terms, the study area is best
characterized as dominated by Case-2
(optically complex) waters, with localized
Case-1 characteristics in clearer, reef-
protected patches; this classification reflects
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significant contributions of inorganic particles
and turbidity locally (Mobley et al., 2004).
The implication for model design is that blue-
green spectral bands are expected to carry
strong depth signals in clearer patches, and the
green 2-yellow spectrum for dominant
suspended sediment areas.

Despite its importance, no large-scale or
high-resolution bathymetric mapping has been
conducted in the MPA to date. This lack of
foundational data presents a major gap in
effective marine spatial planning and habitat
management. The water depth of the Nha
Trang MPA spans from very shallow reef flats
at 0-2 m to deeper channels reaching 40 m,
establishing the full target detection range for
Satellite-Derived Bathymetry (SDB) in this
study.

Classical optical theory holds that the blue
band is typically the deepest-penetrating,
reaching 25 m, followed by green (15 m), red
(5 m), and NIR (< 1 m) (Jupp, 1988).
Therefore, 25 m penetration depth of the blue
band serves as the theoretical maximum
physical attenuation threshold (potential H,.x)
for passive optical SDB. While the 25 m limit
is a remarkable reference, there is a strong
rationale for testing the operational limit at
40 m using the deployed PlanetScope imagery
and machine learning (ML) models in this
study. Local water conditions in Nha Trang
MPA may exceed the generalized clarity
assumptions of classic SDB studies, allowing
for marginally deeper signal penetration. In
addition, modern satellite radiometry (e.g.,
PlanetScope's 12-bit data) offers enhanced
sensitivity, enabling the detection of subtle,
residual spectral signals returning from depths
beyond the classic limit. Lastly, the ML
algorithms employed (e.g., Random Forest)
are nonlinear and non-parametric, enabling
them to leverage complex relationships and
subtle spectral signatures to extrapolate the
depth-reflectance relationship more
effectively into the deeper, near-attenuation
range than traditional linear methods.
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The study site was spatially limited by a
500 m buffer from the shoreline, which was
sufficient to cover the distribution of coral
reefs and other marine habitats in the southern
part of the Nha Trang MPA (Fig. 1).

2.2. Working process, image acquisition, and
field data collection

2.2.1. Working process

Bathymetric map generation from satellite
data begins with the acquisition and
preprocessing of planetary imagery. Raw top-
of-atmosphere (TOA) data are corrected in
ACOLITE to remove atmospheric effects and
derive reliable surface reflectance. After
preprocessing, depth estimation is carried out
using models such as Stumpf, MLR, RF, or
CB. Model performance is evaluated against
ground-truth points (GTPs) using metrics like
R2, RMSE, and MAE. If accuracy is sufficient
(e.g, R’ > 0.80), a final bathymetric map is
produced. If not, model choice and training
are revisited until the required performance is
achieved (Appendix, Figure Al).

2.2.2. Satellite image acquisition

To support high-resolution bathymetric
mapping across the Nha Trang Bay MPA, we
utilized PlanetScope imagery acquired in
2024. PlanetScope provides multispectral data
at a 3-meter spatial resolution, which is
particularly well-suited to capturing the fine-
scale variability of seabed features in complex
coastal environments. The selected image,
retrieved under the Planet's Education and
Research Program and contains eight spectral
bands of Coastal Blue (=431-452 nm), Blue
(=465-515 nm), Green I (=513-549 nm) and
Green II (=547-583 nm), as well as Yellow
(=600-620 nm), Red (=650-680 nm), Red-
edge (=697-713 nm) and NIR (=845-885 nm)
(Appendix, Table Al).

This spectral richness supports the
detection of water column variations and
benthic reflectance, both critical for depth
retrieval. For spatial analysis and modeling,
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the imagery was reprojected to the WGS 84
UTM Zone 49N coordinate system.

2.2.3. Field data collection

Field measurements of water depth were
conducted under optimal environmental
conditions (i.e., clear skies, low wind
intensity, and minimal wave disturbance)
across the coastal waters surrounding the Nha
Trang MPA. We carried out these surveys
over two distinct periods: from 21 March to
23 March and from 22 April to 24 April,
2024. Notably, these in-situ measurements
were deliberately aligned with the dates of
satellite ~image acquisition to ensure
consistency between ground-truth data and
remotely sensed observations (Fig. 1).

Table 1. Water depth statistics

Bathymetric data was collected using a
Garmin GPSMAP 585 Plus single-beam echo
sounder system (points logged roughly every
~ 1-5 s depending on vessel speed), which
integrates ClearVii scanning sonar technology
for enhanced subsurface imaging (Garmin,
https://www.garmin.com.my/products/onthew
ater/gpsmap-585-plus/, accessed on 20 May
2023). This equipment allowed the precise
recording  of  geographic  coordinates
(longitude and latitude) along  with
corresponding water depth at each surveyed
location. The resulting dataset - comprising
approximately 9,549 georeferenced points -
spans a bathymetric gradient from -0.17 m in
very shallow areas to depths of approximately
-40.21 m (Table 1).

No. of Observation Minimum (m)

Mean (m)

Standard deviation (m) Maximum (m)

9,549 -40.21 -12.75

6.83 -0.17

Observations were binned into 5-meter
depth strata. This stratified summary shows
the density of samples in the shallow (0-5 m),
intermediate (5-20 m), and deep (> 20 m)
depth ranges and supports the interpretation of
model performance across depths (Appendix,
Table A2).

The survey was completed by two trained
technicians, responsible for navigating the
survey vessel and operating the sonar
equipment. It is necessary to convert the
measured sea depth to values relative to mean
sea level (MSL). To achieve this, tidal data
from the study site were calibrated to
MSL = 0 using reference information from the
"Tidal Table" published by the Hydro-
Meteorological Forecasting Center (Nha
Trang station).

For each survey point, we computed:

depth MSL = depth_raw +
(tide_height at measurement - mean tidal
level/2) (if neap tide) and

depth MSL = depth_raw -
(tide_height at measurement — mean tidal
level/2) (if spring tide)

The satellite-based depth model was
trained using these MSL-referenced depths to
ensure consistency across survey dates. After
model prediction, the final depth raster was
converted from MSL to the instantaneous
water level at the time of satellite image
acquisition using the corresponding tide
height.

2.3. Bathymetry mapping
2.3.1. Atmospheric correction

We applied the Dark Spectrum Fitting
(DSF) method embedded in the ACOLITE

software, a robust tool tailored for
atmospheric ~ correction  over  aquatic
environments, to effectively remove the

atmospheric influence on water-surface pixel
values (Quinten, 2024). Dark Spectrum
Fitting (DSF) works by identifying the darkest
pixels in an image, or regions where the
surface should reflect almost no light; thus,
any signal the satellite detects there is
primarily from the atmosphere. By matching
these dark-pixel spectra to modeled
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atmospheric effects, DSF estimates and
removes atmospheric scattering, giving a
clean surface reflectance.

This is a standard step to minimize
atmospheric scattering and absorption, which
can distort spectral signatures in coastal and
marine satellite imagery. In our workflow, the
DSF algorithm was executed via ACOLITE's
command-line interface to process high-
resolution PlanetScope (2024) imagery.

The ACOLITE transformed top-of-
atmosphere radiance to surface reflectance at
the water surface, with particular emphasis on
the blue-to-red spectral range, which is a key
input for depth estimation. Since the selected
images exhibited no signs of cloud cover, no
cloud masking was applied (Appendix,
Table A3).

Sun-glint correction was not applied to the
PlanetScope  scenes. The  solar-sensor
geometry of the PlanetScope scene indicates
negligible sun-glint effects. The off-nadir
viewing angle was only 4.8°, while the
azimuthal separation between the Sun (84.8°)
and sensor (98.3°) was approximately 13.5°,
placing the sensor well outside the specular
reflection corridor. Together with the high
solar elevation (57.7°), these conditions
inhibit mirror-reflected sunlight from reaching
the sensor. Visual inspection of the NIR band
shows no haze-like brightening, further
confirming  the absence of  glint
contamination. In addition, visual inspection
of the imagery showed no localized specular
hotspots or haze-like brightening, and the
near-infrared (NIR) band likewise lacked the
elevated diffuse reflectance patterns typically
associated with glint. Given the absence of
detectable glint and because many glint-
correction routines can substantially alter per-
pixel radiometry when applied to scenes with
negligible glint, we preserved the original
surface reflectance to avoid introducing
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corrective artefacts that could bias subsequent
ML training and depth retrieval.

2.3.2.  Traditional models
learning models

and machine

In this section, we focus on regression
models that are widely used in remote sensing
and environmental science. In this paper, we
proceed to implement the Random Forest
(RF), Support Vector Machine (SVM), Light
Gradient Boosting Machine (LGBM),
Extreme Gradient Boosting (XGB), CatBoost
(CB), Gradient Boosting (GB) models, which
cover a diverse range of bagging (RF),
boosting (XGB, CB, GB, LGBM), traditional
ML (SVM), and traditional learning models
(MLR, Stumpf{) to validate the performance of
bathymetry retrieval using 8-band PS

imagery.
2.3.2.1. Traditional models
Multiple Linear Regression model (MLR)

Multiple Linear Regression (MLR) is a
statistical modeling technique used to predict
the value of a single dependent variable from
linear relationships with two or more
independent variables. MLR describes the
linear impacts of multiple inputs on the
dependent variable using linear equations.
This relationship is typically expressed as:

Y = Bo+ B1X1 + BoXot+.. .+ B Xn+e (1)
where:

Y is the dependent variable,

X; are the independent variables,

pi are the regression coefficients
representing the change in Y for a one-unit
change in X;,

fo is the intercept, and € is the error term.

The coefficients can be estimated using
Ordinary Least Squares (OLS), which
minimizes the sum of squared residuals
between observed and predicted values. MLR
is widely applied for prediction, forecasting,
and for deriving relationships among variables
across various research domains.
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Stumpf model

The Stumpf method (i.e., the Log-Ratio)
(Stumpf et al., 2003), is a widely used
empirical approach for estimating shallow
water depth from multispectral satellite
imagery. It leverages the differential
attenuation of light in water across various
wavelengths. The principle is straightforward:
calculate the logarithm of the ratio of
reflectances from a blue band and a green
band in the electromagnetic spectrum. This
ratio is designed to normalize for variations in
illumination and seafloor type, assuming a
near-linear relationship between the log-ratio
value and water depth. In-situ measured
depths are required to calibrate specific
coefficients to transform the log-ratio values
across the image into a comprehensive
bathymetric map. The method is generally
reliable for clear, shallow waters, offering a
cost-effective  alternative to traditional
hydrographic surveys. The technique can be

expressed as the following equation:
D =m* In(2bey — g, )

Rgreen
where:

D is the estimated water depth,
Ry 1s the reflectance in the blue spectral
band,

Rgreen 18 the reflectance in the green

spectral band,
m is the slope coefficient derived from the
linear  regression  during  calibration,

representing the rate of change in depth per
unit change in the log-ratio,

dy is the intercept coefficient (or offset)
derived from the linear regression,
representing the reference depth when the
log-ratio is zero.

This  process establishes a linear
relationship between the natural logarithm of
the ratio of blue-to-green band reflectances
and water depth, with coefficients m and d0
determined through calibration using in-situ
depth measurements. The Stumpf method is
included as a traditional empirical baseline

because it remains widely used for shallow,
clear waters. To ensure a fair comparison, we
report model performance both across the full
depth range and stratified by depth classes
(e.g., 0-5, 5-10 m), where Stumpf is typically
applicable.

2.3.2.2. Machine learning (ML) models
Random Forest (RF)

Random Forest represents an ensemble-
based machine learning approach that begins
by creating multiple bootstrap samples from
the original training dataset (Breiman, 2001).
Within each subsample, the algorithm
randomly selects a subset of input variables to
construct individual decision trees, thereby
ensuring diversity across the ensemble. The
final prediction is obtained by aggregating the
outputs from all constituent trees, typically by
averaging for regression tasks, thereby
significantly improving predictive accuracy
and reducing overfitting compared to single
decision trees. This methodology excels at
modeling complex, nonlinear relationships
among predictor variables and has recently
shown exceptional capabilities in satellite-
derived bathymetry research.

Support Vector Machine (SVM)

Support Vector Machine is a well-
established and widely used machine learning
technique, known for its ability to identify
complex, nonlinear relationships between
spectral reflectance values and shallow-water
depth measurements (Gholami & Fakhari,
2017). The algorithm achieves this by
applying a nonlinear mapping that projects the
input data into a higher-dimensional feature
space via kernel functions. During the model
implementation, support vectors are identified
by systematically dividing available depth
measurements into balanced training and
validation subsets. The optimal regression
boundary is subsequently established using
kernel transformations that enable the
algorithm to handle nonlinear patterns in the
data (Zhang et al., 2022). A distinguishing
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characteristic of SVM is its optimization
strategy, which prioritizes minimizing the
upper bound on generalization error rather
than merely reducing training-set error,
thereby promoting robust model performance
on unseen data.

Light Gradient Boosting Machine (LGBM)

Light Gradient Boosting Machine is an
advanced gradient boosting framework
developed by Microsoft, optimized for both
high  performance and computational
efficiency (Li et al., 2018). Among its most
distinguishing features is the leaf-wise tree
growth algorithm, which contrasts with the
level-wise approach used in traditional
gradient-boosting  methods. Instead of
expanding all nodes at each level, LGBM
grows the tree by continuously splitting the
leaf with the highest potential for loss
reduction. This strategy enables faster
convergence and often yields superior
predictive accuracy, particularly when applied
to large-scale, high-dimensional datasets.

Another notable innovation of LGBM is its
use of histogram-based decision rules, which
bucket continuous feature values into discrete
bins. This not only accelerates the training
process but also significantly reduces memory
usage  without  compromising  model
performance. In addition, LGBM supports
parallel and GPU training, handles categorical
features, and includes built-in regularization
mechanisms, making it particularly effective
for complex data distributions in modern
machine learning tasks.

Extreme Gradient Boosting (XGB)

Extreme Gradient Boosting is an advanced
implementation of the gradient boosting
framework that leverages parallel processing,
constituting a highly scalable machine
learning system specifically engineered to
enhance the efficiency and performance of
tree-based boosting algorithms (Chen &
Guestrin, 2016). The XGB methodology
constructs predictive models through an
iterative process that uses gradient descent to
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minimize a carefully designed loss function
across an ensemble of weak learners, typically
shallow decision trees. Each successive tree is
trained to correct the residual errors from the

previous iteration, creating a powerful
additive model that progressively improves
prediction  accuracy. The algorithm

incorporates several sophisticated features,
including regularization terms to prevent
overfitting, advanced tree-pruning strategies,
and efficient memory management systems
that enable the processing of large datasets.
This ensemble approach has attracted
considerable attention in remote sensing
applications. It has recently been successfully
implemented in satellite-derived bathymetry
studies, where it has demonstrated exceptional

performance in capturing the complex
spectral-depth  relationships  inherent in
shallow-water environments (Gililher &

Alganci, 2023a; Tran et al., 2024).

CatBoost (CB)

CatBoost is a gradient boosting algorithm
developed by Yandex (Prokhorenkova et al.,
2018) that is specifically optimized for
handling  categorical  features  without
extensive preprocessing. Its most distinctive
innovation lies in the use of ordered boosting
and target statistics with permutation-driven
techniques, which effectively prevent target
leakage and overfitting commonly associated
with categorical data encoding. Unlike
traditional methods that rely on one-hot or
label encoding, CatBoost natively encodes
categorical variables during training using
efficient, data-driven schemes. This
capability, combined with competitive
accuracy, robust generalization, and ease of
use, makes CatBoost particularly well-suited
for structured datasets with high cardinality
categorical features.

Gradient Boosting (GB)

Gradient Boosting is a robust and widely
adopted ensemble learning method that builds
predictive models by sequentially combining
weak learners, most commonly decision trees,
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to minimize a specified loss function (Belyadi
& Haghighat, 2021). At its core, GB
iteratively fits each new model to the negative
gradient of the loss function with respect to
the current ensemble's predictions, effectively
correcting the residual errors from prior
iterations. This stage-wise additive approach
allows GB to progressively refine model
accuracy, making it highly effective for both
regression and classification tasks. A key
advantage of GB 1is its flexibility in
optimizing arbitrary  differentiable loss
functions, along with its capacity for fine-
grained control through hyperparameters such
as learning rate, number of iterations, and tree
depth. While the method is powerful, it can be
sensitive to overfitting if not adequately

regularized, requiring careful parameter
tuning and validation. Despite this, GB's
strong theoretical foundation and high

empirical performance have solidified its role
as a cornerstone algorithm in modern machine
learning, particularly for structured data
applications.

2.3.3. Models implementation

The following methodology describes the
implementation process for the proposed
models to estimate water depth within the
research framework.

Hyperparameter tuning

Machine learning algorithms include
multiple  hyperparameters  that  require
optimization to achieve optimal model

performance. An automated random search
approach incorporating five-fold cross-
validation was implemented using the scikit-
learn (Pedregosa et al., 2011) framework to
determine the most effective hyperparameter
combinations  (Appendix, Table A4). We
used the mean squared error (MSE) as the
stopping criterion, with the search terminating
when the minimum MSE was reached.

Model execution

In this study, surface reflectance values
from PlanetScope imagery were used directly

as  predictor variables  without log
transformation, despite the exponential decay
of underwater light with depth. While log- or
log-ratio transforms are often applied in
traditional ~ band-ratio or  multi-linear
regression approaches to linearize the depth-
reflectance relationship, our modelling relies
on non-parametric ML algorithms that do not
require a priori linearity assumptions. These
methods can learn nonlinear and exponential
relationships directly from the raw data.
Moreover, the low-magnitude surface
reflectances observed in our study area
(< 0.05) increase susceptibility to noise
amplification when log-transformed,
particularly in optically deep waters (> 20 m).
By avoiding log transformation, we reduced
the risk of introducing instability in the
predictor variables while retaining the full
dynamic range for model training. We
retained variables for the MLR to validate its
performance on similar datasets to those used
for ML models.

A comprehensive dataset containing 9,549
observation points with 6 predictor variables
(Rrs_coastal, Rrs_ blue, Rrs_green,
Rrs_green2, Rrs yellow, and Rrs red) was
processed using six distinct ML models and
two linear models to assess their ability to
derive  water depth  estimates from
PlanetScope satellite data. The dataset was
randomly partitioned into training (70%,
approximately 6,684 points) and test (30%,
approximately 2,865 points) subsets using
scikit-learn's train test split function. The
Python programming language, integrated
with the Anaconda package manager, was
used to optimize hyperparameters and
compare all selected models.

2.3.4. Model evaluation

To  comprehensively  evaluate  the
performance of the bathymetric models
developed for the Nha Trang MPA, we
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employed a set of widely recognized
statistical evaluation metrics. R? quantifies the
fraction of wvariance explained (higher is
better). RMSE and MAE measure absolute
predictive error (lower is better). AIC and BIC
combine goodness-of-fit with a penalty for
model complexity, with lower values
indicating a better balance of fit and
parsimony (i.e., prefer models with lower
AIC/BIC when comparing similarly-specified
models). We therefore consider R?, RMSE,
and MAE as primary accuracy metrics, and
AIC/BIC as secondary diagnostics for model
complexity and relative model selection, as
detailed in Equations (3) through (7). These
metrics collectively provided a robust
quantitative basis for assessing the accuracy,
reliability, and complexity of the bathymetric
estimations generated by the models.

n 2
R%(y, 9 =1 _ 2= 0im9)°

T i-y)?
in which:
YL i —9)? =Xl el andy =31y
€ : the error term
n: the total number of validation samples
y,: predicted value
y;: corresponding true value

RMSEQ, ) = [AEL,0i- 502 ()

3)

o 1 -
MAE (y,9) = —Xizaly: = 9l (%)
AIC = nxlog (22) + 2 x K (6)
BIC = n x log (%) + K xlog(n) (7)

where:

n: number of observations

K: number of parameters (including
intercept)

RSS: residuals sum of squares

3. Result

3.1. Advanced comparison of the
performances of models for bathymetry
estimation

The comparative analysis of machine
learning models reveals substantial variations
in predictive performance across different
algorithmic approaches. RF emerged as the
superior model, achieving an R? of 0.85,
indicating it explains 85% of the variance in
water depth measurements. The model
achieved the lowest error metrics with RMSE
and MAE wvalues of 2.66 m and 1.85 m,
respectively, while also exhibiting the most
favorable  information  criteria  scores
(AIC = 5609.20, BIC = 5644.96), suggesting
an optimal balance between model complexity
and predictive accuracy (Table 2).

Table 2. Model performance for water depth retrieval in the Nha Trang MPA

Model R’ RMSE MAE AIC BIC
RF 0.85 2.66 1.85 5609.20 5644.96
GB 0.84 2.69 1.91 5677.09 5712.85
XGB 0.84 2.69 1.84 5687.71 5723.47
CB 0.84 2.69 1.94 5689.37 5725.13
LGBM 0.84 2.76 1.99 5831.56 5867.33
SVM 0.82 2.89 2.05 6086.63 6122.39
MLR 0.57 4.46 3.27 8575.46 8611.22
Stumpf 0.29 5.72 4.45 9997.69 10009.22
The ensemble methods, relationships between spectral characteristics

including GB, XGB, and CB, demonstrated
remarkably  similar and  competitive
performance metrics, with R? values of 0.84
and comparable error statistics, indicating their
robust ability to capture the complex nonlinear
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and bathymetric properties in coastal waters.
Conversely, the Stumpf empirical model
underperformed across all evaluation metrics,
achieving the lowest R? (0.29) and the highest
error metrics (RMSE =5.72 m, MAE =4.45 m),



Vietnam Journal of Earth Sciences, 48(2), 167-193

along with substantially elevated information
criteria (AIC = 9997.69, BIC = 10009.22).
The MLR model (depth = -212.52 X RS ousia
+ 277 X Rrspwe T 57792 X RrSgreen +
1842.82 x RrSgreenZ 664.75 X R}"Syeuow
606.29 X Rrs;eq) also demonstrated limited
effectiveness with an R? of 0.57, while SVM
and LGBM showed moderate to good
performance with R? values of 0.82 and 0.84,
respectively.

Ensemble-based machine learning models,
specifically RF, GB, XGB, CB, and LGBM,
demonstrated  exceptional accuracy in
predicting water depths. These models
achieved high correlation coefficients
(approximately 0.91-0.92), standard
deviations that closely matched the observed
data, and minimal RMSD values. This strong
performance indicates their superior ability to
accurately reproduce both the magnitudes and
spatial patterns of actual water-depth
measurements. Notably, the RF model
performed slightly worse on the performance
metrics, suggesting greater confidence in its
depth predictions (Appendix, Figure A2).

The SVM model also performed relatively
well, with a correlation coefficient of about
0.91 and a slightly lower standard deviation
than the observations. However, its greater
distance from the reference point (indicating
less accuracy) compared to the ensemble
models suggests a marginal reduction in its
predictive capability. In contrast, the MLR
and  Stumpf models  underperformed
significantly. The MLR model had a
correlation coefficient below 0.8, whereas the
Stumpf model's was below 0.6. This indicates
that both models substantially underestimated
data variability and deviated considerably
from observed patterns. The Stumpf model, in
particular, failed to accurately capture either
the variability or the spatial structure of the
observed bathymetry, as evidenced by its
significantly underestimated standard
deviation (~2.5) and the highest RMSD
(Appendix, Figure A2).

We further assessed the performance of
our water depth estimation models using
scatter density plots (Appendix, Figure A3(a-
h)), which illustrate prediction accuracy and
distribution across the entire depth range. The
RF model (Appendix, Figure A3c) delivered
the highest predictive accuracy, achieving an
R? of 0.85 and the lowest RMSE of 2.66 m. Its
predictions clustered tightly around the 1:1
reference line, demonstrating excellent
agreement with measured values across all
depths. The SVM model (Appendix, Figure
A3d) also performed strongly (R* = 0.82;
RMSE = 2.89 m), though with slightly greater
dispersion, particularly at deeper ranges.

The ensemble gradient-boosting models
LGBM (Appendix, Figure A3e), XGB
(Appendix, Figure A3f), CB (Appendix,
Figure A3g), and GB (Appendix, Figure A3h)
showed comparable robust performance.
While minor scattering was observed at
deeper ranges across these four boosting
algorithms, it did not significantly diminish
their overall performance. In contrast, both the
MLR (Appendix, Figure A3a) and Stumpf
models (Appendix, Figure A3Db)
underperformed at all scenarios. Their plots
showed significant deviation from the 1:1
line, particularly at greater depths, where
these models consistently underestimated
actual depths. Rather than implying a
theoretical shortcoming, this result indicates
that linear models such as MLR and simple
log-ratio approaches fail to capture complex,
spatially varying nonlinear relationships
between multispectral reflectance and depth in
optically heterogeneous coastal waters.

3.2. Feature rank across ML models

The feature importance analysis reveals
distinct patterns in the utilization of spectral
features for satellite-derived bathymetry.
Rrs_green2 emerges as the dominant predictor
across all models, though with substantial
variation in relative importance. XGB and
SVM demonstrate a concentration at
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~70-80%, while RF, CB, and GB show
moderate dependence (~35-40%), and LGBM
exhibits intermediate values (~20%). This
universal dominance of green wavelength
reflectance aligns with established optical
principles, which state that green light
provides optimal water-column penetration
and depth sensitivity in coastal environments.
Model-specific feature preferences reveal
significant algorithmic differences. A balance
in feature selection was found for LGBM,
with Rrs yellow, Rrs red, Rrs coastal, and
Rrs_blue each contributing 15-18% alongside
the primary green features. This distribution
differs from XGB's concentrated strategy, in
which secondary features contribute little.
Tree-based ensemble methods (RF, GB, CB)
show convergent patterns, with Rrs_green
consistently ranking second (~15 - <30%) and
other spectral bands contributing modestly
(~5-15%). SVM occupies an intermediate
position, showing moderate feature diversity
while  maintaining  strong  Rrs_green2
dependence. Rrs green maintains consistent
secondary importance across most models;
Rrs_blue shows variable importance, ranking
moderately in RF and GB (~15%) but
receiving less weight in XGB and SVM. The
coastal (Rrs_coastal), yellow (Rrs_yellow),
and red (Rrs red) bands identify relative
magnitudes across all models (~3-15%),
reflecting their limited but consistent
bathymetric utility (Appendix, Figure A4).
Previous studies consistently highlight the
green band as the most influential predictor
for bathymetry estimation in machine learning
models, particularly because it has the highest
feature importance in the RF algorithm (Xie et
al., 2023). The blue band is generally ranked
second in importance, with both bands being
essential for bathymetric modeling because
their reflectance signals can penetrate deeper
into the water column (Xie et al., 2023). This
finding aligns with Saeidi et al. (2023), who
emphasized that the green and blue spectral
ranges are the most critical for accurate
bathymetric mapping. Similarly, Ashphaq et
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al. (2021) concluded that the optimal spectral
bands for shallow-water bathymetry lie within
the blue-green region.

Given the optically complex, sediment-rich
coastal waters at our study site, depth-
dependent reflectance arises from the
interaction of multiple processes, including
particle backscattering in the green-yellow
domain, absorption in the blue, and surface or
sediment contributions in the coastal band.
The feature-importance analyses (Appendix,
Figure A4) illustrate that tree-based models
differ in how they exploit these signals. While
XGB concentrates heavily on Rrs_green2,
likely because this band carries the strongest
first-order relationship with bathymetry in
turbid environments, RF distributes
importance more evenly across the spectrum.
This balanced reliance is physically plausible:
the blue and coastal bands help constrain
attenuation in clearer portions of the transects;
the yellow band captures suspended
particulate effects; and the red band
contributes to shallow-water discrimination
where bottom influence weakens. Such multi-
band integration prevents overemphasis on a
single wavelength whose response may
saturate or become unstable under varying
sediment loads. Consequently, RF's more
uniform feature usage reflects a modelling
strategy that aligns with the optical
oceanography of the region and may partially
explain its more stable performance across
depth ranges and turbidity regimes.

The consistent prioritization of green
wavelengths across all approaches validates
the physical basis of optical bathymetry. It
underscores the critical importance of high-
quality green-band measurements in satellite-
derived bathymetric applications.

3.3. Satellite-derived seafloor topography

The RF-derived bathymetric map of the
Nha Trang MPA (Apendix, Figure AS)
reveals a complex underwater landscape with
significant variations in water depth and
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diverse seafloor features. Our bathymetry
analysis shows a total depth of 35 m. The
shallowest areas (< 0 to -5 m) appear in
yellow, while the deepest zones (-30 to
-35 m) are depicted in dark blue to purple.
Intermediate depths (-5 to -25 m) transition
from green to teal, indicating a gradual depth
change across the study area.

Shallow-water habitats (< 0 to -10 m deep)
are mainly found along the edges of coral reef
systems and near the coast. These areas have
irregular and patchy boundaries, suggesting
the presence of reef flats, lagoons, and
nearshore environments. The yellow and light
green zones indicate ideal conditions for coral
growth and high biodiversity, typically due to
sufficient light for photosynthesis.

The deeper sections (> 25 m) are primarily
located in the central and southeastern parts of
the mapped area, forming distinct basins and
channels. These dark blue to purple zones
likely correspond to channels between reefs,
fore-reef slopes, and sandy seafloor habitats.
Sharp depth changes in several locations
suggest the presence of reef walls or steep
underwater inclines.

The bathymetric map highlights significant
spatial heterogeneity, with numerous isolated
coral patches and intricate reef formations
creating a mosaic of different depth zones.
This varied distribution is particularly
noticeable in the central region, where
alternating shallow and deep areas form a
complex three-dimensional habitat. The
fragmented nature of the reef systems
suggests both natural geological processes and
potential human impacts.

4. Discussions

4.1. Bathymetry model accuracy across depth
ranges

To reveal higher distinct performance
patterns  of  different approaches for
bathymetry estimation, we highlight the
RMSE values across depth ranges. All models

achieve optimal performance in shallow water
conditions and experience progressive
accuracy deterioration as water depth
increases. In the shallow-water zones (< 0 to
-15 m), most models exhibit remarkably
similar and satisfactory performance, with
RMSE values consistently below 3 m across
this depth range. The ML algorithms (RF, GB,
CB, XGB, SVM, LGBM) and the traditional
MLR approach show comparable accuracy
levels in these shallow conditions, where
water clarity is typically optimal and bottom
reflectance provides strong signal return,
while the Stumpf model begins to exhibit
slightly elevated error rates around 3-4 m in
the deeper areas.

The transition to moderate depths reveals a
notable shift in model performance, with
accuracy varying beyond the -20 m threshold.
The Stumpf model performs relatively well in
the shallow range (0- ~20 m) but degrades
rapidly with depth. Compared to the ML
models, which maintain relatively stable
RMSE values around 4-5 m, the MLR
approach occupies an intermediate position
with error rates of approximately 5 m. The
accuracy decline becomes substantially more
severe in deeper waters (-25 to -35 m), where
the Stumpf model becomes progressively
unreliable (RMSE ranging from 12 to 17 m),
while the ML models continue to demonstrate
superior performance but still exhibit
increasing error rates of 5 to 7 m. In the
deepest surveyed range (-35 to -41 m), all
models exhibit significant limitations, with the
Stumpf model becoming essentially unusable
(RMSE exceeding 22 m), while ML models
show substantial errors of 8—9 m (Appendix,
Figure A6).

Previous studies consistently show that the
accuracy of satellite-derived bathymetry
decreases with increasing depth, regardless of
sensor type or modelling framework.
Moeinkhah et al. (2019) reported low errors
in very shallow waters (< 5 m,
RMSE = 1.253 m), but accuracy dropped
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markedly beyond 10 m. Duan et al. (2022)
similarly demonstrated that once depths
exceeded ~15 m, estimation errors increased
substantially, and most models approached
practical limits near 20-25 m. Liu et al. (2024)

further confirmed this depth-dependent
decline, noting that although Gradient
Boosting achieved high shallow-water

accuracy (RMSE = 0.59 m), all methods
tested (Stumpf, Log-Linear, Neural Networks,
and Gradient Boosting) exhibited escalating
RMSE values as ddepth increased.
PlanetScope-based studies show the same
pattern, of which Sagawa et al. (2023)
reported very low errors (0.5-0.9 m for O to
10 m; 1.0-1.4 m for 0 to 20 m), with accuracy
decreasing in deeper classes, while Caballero
and Stumpf (2023) demonstrated consistently
lower errors in shallower intervals across
multiple sites. Most recently, Downes et al.
(2025) emphasized that model performance
was strongest within the 0.5-5 m range, with
modest increases in error at greater depths.
Altogether, these studies highlight a robust
inverse relationship between water depth and
SDB accuracy.

Against this backdrop, the RF model
developed in this study achieved R* = 0.85,
RMSE = 2.66 m, and MAE = 1.85 m across
an extensive range of retrieval intervals
(0.5-40 m). This performance aligns with the
expected behaviour of SDB systems while
demonstrating stability over a markedly larger
depth range than most empirical or ML-based
studies. Recent work using WorldView-2,
PlanetScope, and Sentinel-2 typically reports
low vertical errors but is generally confined to
much shallower environments. For example,
Celik et al. (2023) achieved R? = 0.85, RMSE
0.93-2.41 m, and MAE 0.65-1.86 m within
6-9 m depth intervals. Comparable shallow-
water error levels are reported in
other ~WorldView-2  coral-reef studies
(RMSE = 0.82-0.87 m) (Wicaksono et al.,
2024), while PlanetScope and Landsat-8
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comparisons show RMSE = 0.38-0.43 m for
shallow coastal zones (Gabr et al., 2020).
These results are fully consistent with ours,
but they are derived under far less optically
attenuated conditions and over much smaller
depth windows.

Studies using freely available multispectral
sensors reinforce the idea that SDB accuracy
is determined more by optical water
properties, substrate, and the
representativeness of the training data than by
the specific ML regressor. Kwon et al. (2024)
demonstrated stable RF performance on
Sentinel-2 across Korean coastal sites, while
Ye et al. (2024) showed that integrating
Sentinel-2 with ICESat-2 may extend
shallow-water retrievals but remains most
reliable within the upper ~15 m. Together,
these findings confirm that (i) ML regressors
reliably outperform simple empirical models
in optically complex waters; (i1)) RMSE scales
with accessible depth range; and (iii) the
contribution of this study lies in showing that
PlanetScope + RF can retain competitive
accuracy (R? = 0.85; RMSE = 2.66 m) while
mapping depths from nearshore to ~40 m, a
range that exceeds the typical operational
limits documented in the SDB literature. This
capability is particularly valuable for coastal
management, habitat monitoring, and
applications that require consistent depth
retrieval across both shallow and moderately
deep tropical waters.

Our results show that MLR and Stumpf
models do not necessarily achieve their
highest accuracy in the very shallow zone
(0-5 m). This pattern contrasts with the
standard expectation for empirical
bathymetric models. This behaviour can be
attributed to the interaction between
discharged sediment from the shoreline and
seabed morphology in the Nha Trang MPA.
While CR1 (please refer to Fig. 2) presents a
smooth depth gradient, other transects (CR3-
CRS5) exhibit abrupt depth changes within the
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0-20 m range, reducing model stability in the
shallowest waters. In contrast, the more
gradual transitions observed between -12 and
-18 m at CR4 and CRS5 correspond to the best
performance of both models. Similar depth-
dependent behaviour has been reported
elsewhere; for example, Wu et al. (2021)
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found higher RMSEs for machine-learning
models in the 0-3 m zone than at slightly
more profound depths. Additionally, elevated
turbidity near the shoreline - likely influenced

by

ongoing construction and dredging - may

weaken the bottom signal, contributing to
reduced accuracy in these models.
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Figure 2. Bathymetric variation in different cross sections

Based on the depth-stratified performance
already reported, the RF model maintains

stable accuracy (R*> > 0.8) down to an
operationally reliable range of 25-30 m, after
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which RMSE gradually increases. This pattern
is consistent with theoretical penetration
thresholds for blue-green wavelengths (Jupp,
1988). Reported RMSE values at 30-40 m
reflect known physical limitations of light
penetration, and therefore, we interpret
Hiox = 25 m as the effective operational limit
of the model in Nha Trang MPA. Depths
> 25 m were still mapped, but should be
considered beyond the physically reliable
range of passive multispectral SDB in this
environment.

Notably, the machine learning approaches
(XGB, RF, CB) consistently outperformed the
multi-linear regression model without the
need for log-transforming spectral bands. This

is because tree-based algorithms can
inherently = model the nonlinear and
exponential relationships between surface

reflectance and depth, eliminating the need for
pre-linearization that linear models require. In
addition, given the very low surface
reflectances observed in our dataset (< 0.05)
and the inclusion of optically deep waters
(> 20 m), applying a log transform would
likely amplify sensor noise and atmospheric
residuals, especially in the blue-green
wavelengths, potentially reducing model
stability. Using surface reflectance values, the
ML models preserved the true dynamic range
of the input data while flexibly adapting to
variations in water clarity, depth, and bottom
type across the study area. The green-2 (Green
II, ~547-583 nm) band consistently ranks
highest in importance in our models because,
in tropical coastal waters like Nha Trang,
green wavelengths often maximize bottom-
signal penetration while limiting scattering
relative to shorter blue wavelengths under
sediment-rich (Case-2) conditions. In clearer
reef channels where scattering is reduced,
blue wavelengths also contribute strongly; this
explains the observed dominance of green and
blue bands across models.

This comprehensive evaluation clearly
demonstrates that ensemble ML methods (RF,
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GB, CB, XGB) consistently outperform both
traditional ~ empirical  approaches  and
conventional regression methods across all
depth ranges, with this performance advantage
becoming more pronounced as environmental
conditions become more challenging (e.g.,
deeper  area, sedimentation, complex
seafloor). However, the steady increase in
estimation errors with depth reflects the
inherent physical limitations of optical remote
sensing for bathymetric applications, where
factors such as light attenuation, reduced
bottom contrast, and diminished signal-to-
noise ratios progressively reduce depth
estimation accuracy, suggesting that satellite-
derived bathymetry techniques are most
reliable for shallow coastal mapping
applications up to approximately 25-30 m
depth in the Nha Trang MPA.

Despite the models' promising
performance, a few limitations remain. Depth
retrieval beyond approximately 30-40 m
remains challenging due to reduced signal
penetration and increased noise in optically
complex waters. Additionally, producing
habitat-specific depth profiles (e.g., for coral
or rocky reef zones) was not feasible because
validated benthic-habitat maps are currently
unavailable for the study area; therefore,
cross-sections were kept generic to avoid
speculative interpretation. Future research
should prioritize the development or
acquisition of reliable habitat maps and
explore integrating recently developed depth-
invariant indices as synthetic spectral inputs
for ML-based SDB. Such indices could
further decouple bottom and water-column
effects and potentially enhance depth-
estimation accuracy, particularly when
leveraging PlanetScope's 8-band  sensor
capabilities in coral-reef environments.

4.2. Bathymetric variation across
sections

The assessment of estimated versus
measured depths across transects CR1-CRS

depth
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provides important insights into the depth
retrieval model's performance and reliability
under diverse coastal bathymetric conditions.
The estimated depth profiles (continuous
lines) show substantial agreement with in situ
measurements (discrete points), particularly
within transects exhibiting pronounced, well-
delineated depth gradients. This concordance
is most evident in CR1, CR3, and CRS5, where
the model successfully resolves the abrupt
transition from shallow nearshore
environments to deeper offshore waters within
the initial 100-150 m of each profile. The
proximity of continuous and discrete data in
these regions demonstrates the model's
efficacy under optimal optical conditions,
characterized by strong benthic reflectance
and enhanced water transparency that
facilitate signal penetration (Fig. 2).

Conversely, CR2 and CR4 exhibit more
intricate and heterogeneous bathymetric
configurations, accompanied by increased
variability in both estimated and observed
depth  values.  These  transects are
characterized by relatively moderate slopes
interspersed with undulating or flat seafloor
segments, particularly beyond 200 m, where
divergences between estimated and measured
depths become increasingly noticeable. The
estimation profiles in these areas exhibit
greater fluctuations, while the dispersion of
measured data points increases, suggesting a
decrease in model reliability in areas with
reduced contrast in bottom features,
potentially due to sediment interference or
weaker optical signals. Although the overall
bathymetric trend is reasonably well
represented, the model-data agreement is
substantially weaker than for steeper but
flatter transects.

The collective analysis across all transects
demonstrates that the model achieves optimal
performance in environments featuring steep
bathymetric gradients and optically transparent
waters, where seafloor features are distinct and
spatially continuous. Under more complex
benthic conditions - particularly where depth

variations are subtle or optical signal
attenuation occurs - the model still provides
valid estimates but with reduced precision. The
tight clustering of measured points around
estimation lines throughout most profile
sections nevertheless validates the model's
applicability for coastal bathymetric mapping,
while identifying opportunities for
improvement  through  enhanced  data
smoothing algorithms and error-correction
procedures in regions of increased seafloor
complexity or environmental interference.

5. Conclusions

This study demonstrates the substantial
potential of high-resolution PlanetScope
imagery for satellite-derived bathymetry
(SDB) in shallow, optically complex tropical
waters, exemplified by the Nha Trang MPA,
Vietnam. Through a rigorous comparative
analysis between conventional empirical
models (Stumpf and MLR) and a suite of
advanced ML algorithms, we provide one of
the most comprehensive evaluations to date
for PlanetScope-based bathymetric mapping.
The RF algorithm produced the most accurate
depth estimates, achieving an R? of 0.85, an
RMSE of 2.66 m, and an MAE of 1.85 m.
At the same time, other gradient-boosting
models (GB, XGB, CB, and LGBM) also
performed strongly (R? = 0.84), substantially
outperforming traditional approaches. Feature
importance analysis consistently highlighted
the contributions of Rrs green2, Rrs_green,
and Rrs_blue, underscoring their sensitivity to
water-column depth.

Based on observed performance and
optical constraints, the proposed ML-based
SDB framework provides reliable estimates to
approximately 25-30 m depth in shallow
areas, offering clear practical value for habitat
mapping and coastal management.
Nonetheless, a few limitations should be
acknowledged, including the inherent depth
ceiling imposed by light attenuation in
optically complex waters, potential temporal
mismatches between satellite and in-situ
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measurements, and uncertainties in
transferring trained models to areas with
different environmental conditions.

This research  establishes a  solid
methodological foundation for operational
SDB applications in data-limited tropical
regions. It highlights the advantages of
combining accessible, high-revisit satellite
data with modern analytical techniques.
Future work may explore physics-informed or
hybrid ML-radiative-transfer  approaches,
assess model generalizability across seasons
and water types, and integrate multisensor
observations to enhance depth-retrieval
accuracy and spatial coverage further.
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Table A1. PlanetScope image profile used for bathymetry mapping

Scene ID Date of Cloud Spatial Radiometric | View angle |Scene swath
acquisition |coverage (%)[resolution (m)resolution (bit) (°) (km)
20240424 022649 77 24d0| 24 April 2024 0 3 | 12 4.8 16.1

Table A2. Number of observations per 5-m depth

Table A3. ACOLITE parameters for atmospheric

strata correction
Depth bin (m) Number of observations Parameter Value
0-5 441 dsf interface reflectance True
5-20 7,127 min_tgas_aot 0.85
>20 1.981 min_tgas rho 0.70
: dsf residual glint correction True
adjacency_correction True
dsf aot estimate fixed
Output Surface reflectance (R,.5)
Table A4. Hyperparameters used for ML models
RF max_features sqrt SVM kernel RBF
min_sample leaf 3 C 80.84
n_estimators 144 Epsilon 0.46
min_sample split 6 gamma scale
XGB subsample 0.88 LGBM subsample 0.86
colsample bytree 0.94 learning_rate 0.03
learning_rate 0.03 max_depth None
max_depth 20 n_estimators 170
n_estimators 253 num _leaves 67
CB depth 10 GB min_child_samples 25
iterations 487 learning_rate 0.02
learning_rate 0.05 max_depth 9
12 leaf reg 2 max_features sqrt
min_samples leaf 4
min_samples_split 6
n_estimators 198
subsample 0.84
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Figure A5. Bathymetry map derived from proposed models in the Nha Trang MPA
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