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ABSTRACT

The occurrence of natural disasters, especially with landslides, threatens mountainous districts and has serious
consequences on local tourism development. Future disaster management must develop efficient innovative tools to
control the rising frequency and intensity of landslides due to the impacts of economic development and climate
change. Minimizing the risk and effects of these occurrences relies on the establishment of an optimal early warning
system. This study focuses on the integration of artificial intelligence approaches to identify landslides and evaluate
their susceptibility, with an emphasis on early warning systems on tourist routes in Da Bac district. As the first tool in
the system, advanced deep learning models using satellite data at high resolution assist in identifying landslides. As a
result, a developed DeepLab-v3 model demonstrated high performance by reaching 0.213 dice coefficient and 96.8%
accuracy for landslide detection without restrictions from specific input resolution sizes. As the second tool, various
machine learning tools, such as Random Forest and Support Vector Machine, utilize the identified landslide locations
from the first tool to assess and map their susceptibility based on environmental and human-made factors.
Accordingly, the study proposed an early warning system for landslide disaster management using real-time
ecological factors and historical data. The proposed integrated system helps tourists and local communities take
preventive actions that reduce landslide impacts, thus achieving safety goals in tourism activities, particularly in the
Da Bac district of Hoa Binh province, Vietnam. It enhances strategies to minimize risk, increases the ability to predict

landslide-prone tourist areas, and aids in implementing sustainable tourism in the future.
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1. Introduction billion people in 2018 for outdoor activities in
mountainous landscapes, including hiking and
skiing (Lee and Jayakumar, 2021; Leuven,
2014). However, tourists have a high risk of
injury from landslides due to unfamiliarity
with the terrain and a lack of knowledge about
*Corresponding author, Email: huonghtt@hus.edu.vn Wal‘ning Signs (Luu et al., 2023; Newsome

According to the United Nations World
Tourism Organization (UNWTO), records
indicated that international travel reached 1.4
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and Dowling, 2018). For example, Annual
landslides leave tourist groups isolated for
days in Vietnam's northern mountainous
provinces, such as Ha Giang, Lao Cai, and
Hoa Binh provinces (Duc et al., 2023). At
least eight people died after heavy rain led to
landslides in areas in Southeast Asia
following the Tropical Storm Kajiki in August
2025. There was one death in a landslide in
the northern city of Chiang Mai in Thailand.
The Thai Department of Disaster Prevention
and Mitigation reported that several others
suffered injuries in flash flooding and
landslides in the northern part of the country.
World Bank indicated that landslides killed
thousands of lives and cause billions of
dollars in property damage in 2020 (World

Bank Group, 2021, 2020). The
implementation of warning systems for live
slope monitoring and rainfall pattern

surveillance should cover the entire length of
tourism pathways (Valchev et al., 2017).
Emergency measures for authority
intervention are needed for the detection of
upcoming landslides to establish safety
protections for tourists (Kubalikova et al.,
2021). Landslide warnings in Nepal offer 80%
better protection by combining rapid
emergency rescue operations with immediate
safety alerts (Gallo and Lavé, 2014). The
assessment of landslide risks allows the
construction of  safety-oriented  tourist
infrastructure throughout different regions
(Froude and Petley, 2018). Tourist land-use
planning in the rocky areas minimizes
landslide dangers by half (Tricia et al., 2019).
The safety measure includes both the
prevention of walking trails in dangerous
regions and restrictions on building projects in
vulnerable areas (Aji et al., 2021). Therefore,
the detection of landslides and their associated
danger must be utilized to make effective
choices about developing tourism initiatives
in mountain environments.

'https://www.euronews.com/2025/08/27/

Traditionally, geologists can create detailed
maps that predict landslide probability by
analyzing digitized data (Duc et al.,, 2023;
Pham et al, 2023). Based on their
susceptibility, specific thresholds proposed by
experts, such as slope angles or cumulative
rainfall over a period, can trigger warnings or
bans, thus safeguarding tourists (Aprina et al.,
2024; Doan et al., 2024). Historical documents,
along with geological information, have
traditionally served as a valuable resource for
researchers in detecting landslides (Nguyen et
al., 2011; Roa-Lobo, 2007). The field of
landslide  identification has  undergone
significant advancements due to machine
learning (ML) and, more specifically, deep
learning (DL) advancements (Naveen et al.,
2022). DL models deliver much more effective
landslide  detection  and  vulnerability
assessment capabilities compared to traditional
ML methods (Nhu et al., 2020). The detection
of landslides using Support Vector Machines
(SVMs) and Random Forests demonstrates
proven effectiveness in studies of Phong et al
(2020), Prakash et al (2021), and Nguyen et al
(2024). Accordingly, the frequency and
location of landslides can be mapped. The
location of landslides detected from above
models helps tourism officials observe changes
in hazard information before prediction and
choose an appropriate response plan.

The current landslide risk assessment
techniques have been developed from ML
models (Khan et al., 2021; Zhao and Lu,
2018). The ability of Convolutional Neural
Networks (CNNs) and Recurrent Neural
Networks (RNNs) to identify intricate
associations within large datasets related to
landslide factors was demonstrated by
(Ghorbanzadeh et al.). The analysis of satellite
imagery using CNNs becomes possible
through images of confirmed landslides to
achieve accurate landslide probability maps
(Catani, 2021). A combination of current
weather monitoring data and previous
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precipitation records enables them to calculate
landslide  probabilities by  considering
changing environmental conditions. For
instance, a CNN can detect subtle changes in
a hill, like increasing moisture levels or minor
movements, from years of satellite data,
enabling it to forecast a landslide before it
occurs (Prakash et al., 2021). RNNs are highly
effective with sequential data, such as rainfall
patterns (Alom et al., 2019). A forecasting
ability enables authorities to discover
potential dangers before they issue critical
safety warnings during threatening situations
(Casagli et al., 2023). The mentioned studies
have proven that modern technological tools
based on ML and DL systems enhance both
landslide prediction analysis and detection
capabilities, which strengthens mountain
tourism protection security (Tofani et al.,
2013). However, to date, this integrated
system has not been developed or
implemented in any country.

This work aims to propose a DL model
that can identify signs of landslides using
WorldView-2 satellite images and an ML
model that can evaluate the landslide hazards
by analyzing relevant environmental and
socio-economic aspects. The proposed
integrated system utilizes various methods to
connect field observations with detailed
remote sensing data that identifies landslides
in WorldView-2 datasets, as explained in
Section 2.3. Sections 2.4 and 2.5 present the
advancements in different machine-learning
techniques used in assessing landslide risks.
Testing of the outcome models was conducted
in Da Bac, Hoa Binh Province, a designated
tourism area in Vietnam, by combining
diverse data types with artificial intelligence
processing methods.

2. Materials and methods
2.1. Case study
The case study in Da Bac, Hoa Binh

province, Vietnam (Fig. 1), was chosen to test
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the proposed artificial intelligence system to
monitor landslide traces and analyze landslide
hazards along tourism routes. Based on the
potential of tourism development, in recent
years, the Da Bac district has prioritized
infrastructure investment, promotion, and the
implementation of solutions to foster tourism
development, thereby establishing appealing
tourist destinations (Hung et al., 2015).
Notably, managers emphasised investments in
transportation infrastructure, including the
expansion of the Hien Luong-Tien Phong
route, which is anticipated to be finalized by
2025. Sung village (Cao Son commune), Ke
village (Hien Luong commune), and Da Bia
village (Tien Phong commune) are the
district's most prominent community tourism
destinations (Bui et al., 2012b). The Institute
of Geosciences and Mineral Resources under
the Ministry of Natural Resources and
Environment of Vietnam identifies Hoa Binh
provincial landslides as highly prone to
danger (Doan et al., 2024). A total of 89 sites
have been documented to carry a high risk of
sudden landslides, which affected 4,661
households during the 2010s. The Da Bac
District People's Committee has established
multiple plans to anticipate various
hazardous circumstances, including
unpredictable landslide threats from complex
terrain conditions and rainy seasons (Hung et
al., 2015). Landslides have impacted 15/17
villages in the entire Da Bac district in 2019.
Landslides are particularly prevalent in
regions with steep slopes, complex lithology,
or roads with positive gradients during the
rainy season. In particular, the section of
National Highway 6 that passes Doc Cun at
Km79+100, at route 443, through Hoa Binh
city and Da Bac district, experienced six
landslides, resulting in a total volume of soil
and debris exceeding 1,600 m® (Hang et al.,
2021). In recent years, individuals have
ceased to cut down trees on the summit of
the hill to protect the land. However, the risk
of landslides remains constant during the
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rainy season. The majority of landslides
occurred at night, which renders them even
more dangerous. Therefore, local authorities

need a comprehensive warning system to
help minimize unexpected incidents that may
happen to residents and tourists in the future.
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Figure 1. Location of research area

2.2. Research process

The research process is divided into three
steps and shown in Fig. 2. Step 1 uses a DL
model developed from a previous study by the
research team using Sentinel-2 remote sensing
to identify landslide locations in the past. The
content of this step was summarized in section
2.2. Because the results of the DL model are
new, they are presented in Section 3.1. Next,
step 2 of the process involves developing an
ML model using geospatial information
collected from past landslide locations in step
1. The geospatial data and landslide factors
will be filtered to select the most critical
factors for developing the ML model. After
selecting the most optimal ML model, it was
applied to predict landslides for 12
consecutive months, thereby identifying
traffic areas with the highest landslide risk.

2.3. Step 1: Application of a deep learning
model for landslide detection

The application of DL models to identify
landslide traces in satellite images was
presented in the paper titled "Deep learning
models integrating multi-sensor and temporal
remote sensing to monitor landslide traces in
Vietnam" of our research group, published in
the "International Journal of Disaster Risk
Reduction" journal in 2024. Once the DL
model was successfully developed, the
authors utilized it to detect landslides in
WorldView-2 satellite images, eliminating the
need for additional training data. In this study,
the trained DL model was applied for
landslide detection at Da Bac, Hoa Binh
province, Vietnam. The description to develop
this model is briefly explained in Appendix B.
The outcome of this model was shown in
Section 3.1.
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Figure 2. Framework to detect landslide traces and assess landslide hazards based on artificial
intelligence models

2.4. Step 2: Preparing landslide
conditioning factors

A landslide is generated when rocks or
soil, together with other sedimentary
materials, descend a sloping terrain (Dang et
al., 2018; Nguyen et al., 2024). These events
are complex and result from various
interrelated factors. Learning these factors
enables more effective landslide prevention.
This research reviewed expert opinions,
scientific literature, and available data to
provide insights into landslide hazard (Tran et
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al., 2024). Accordingly, landslide
conditioning factors include geological,
lithological, topographical, hydrological, etc.,
and social ones (Geertsema et al., 2009; Khan
et al., 2021). However, some of them can have
a similar meaning or interaction effects with
each other. Therefore, once all data were
collected, the correlation between them needs
to be analyzed to eliminate less meaningful
factors in assessing landslide hazard. The
description of the considered factors is seen in
Fig. 3 and explained in detail in Appendix C.
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Figure 3. Maps of landslide conditioning factors
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2.5. Step 3: Selecting architectures for the ML
model for landslide susceptibility mapping

Traditional landslide hazard mapping by
interdisciplinary experts requires substantial
human effort and subjective evaluations, yet it
lacks suitability when handling advanced
geographic data (Schweigl and Hervas, 2009;
Zhao and Lu, 2018). ML technology presents
an effective and reliable response through its
operational solution. For example, the Support
Vector Machine model masters pattern
discovery when processing extensive data
collections that help determine landslide
zones by evaluating slope data and plant cover
patterns as well as past landslide sites (Abdo
and Richi, 2024). Meanwhile, Random
Forests achieve ensemble learning through
multiple decision trees that analyze random
subsets of landslide features before
identifying them (Sharma et al., 2024). The
analysis of large datasets by ML algorithms
helps detect elaborate associations that lead to
landslide risk factors. The algorithms detect
relationship  patterns between predictor
variables and past landslide events to forecast
existing landslide risks. In this study, the
authors employed five advanced ML
algorithms Random Forest, SVM, KNN,
LDA, and Decision Tree to map landslide
susceptibility (Agboola et al., 2024; Sun et al.,
2024). All values of landslide conditioning
factors (mentioned in Section 2.3) were
extracted for each "landslide" and "non-
landslide" sample (mentioned in Section 2.2).
The input data for training ML models is a
matrix of landslide conditioning factors in
these samples. They were separated into two
parts, including a training and validation
group (with a ratio of 80:20), before being
added to the training model process. The
details of each model are presented in
Appendix D.

Regarding model performance, accurate
evaluation of ML models supports effective
landslide  susceptibility  forecasting and

n

prevents both model overfitting and
underfitting. The performance assessment of
trained models depends on loss function
values and different parameters such as ACC,
Kappa, Sensitivity, Specificity, Positive
Predicted value, Negative Predicted value,
and the area under the curve (AUC) to
evaluate the precision between prediction and
training validation labels (Abdo and Richi,
2024; Pham et al., 2022). The description of
each measurement value was explained in
detail in Appendix E.

2.6. Scenario development for monthly
landslide susceptibility

After choosing the best model, the model
can be used to assess and map landslide
susceptibility for new regions. Although the
input data consists only of sample points in Da
Bac district, Hoa Binh province, Vietnam, the
landslide susceptibility in the whole district has
been mapped, especially along tourism routes.
Once the ML model is completed, no more
sample is needed. The input data in scenario
development are only maps of landslide
conditioning factors. The landslide
susceptibility map can be updated based on
precipitation. Other maps related to the eight
input variables were maintained, while the
precipitation map can be changed to visualize
the changes in landslide susceptibility every
month. The average value of precipitation was
also selected to observe the background of
landslide susceptibility in general. Additionally,
the authors selected the precipitation maps for
12 months as one main input for running the
ML model. Accordingly, the changes of
landslide susceptibility along the tourism routes
were estimated in twelve months of a year in
the Da Bac, Hoa Binh province.

3. Results

3.1. Landslide traces detected based on a
deep learning model

Based on the Deeplab-v3 model with
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Densenet169 architecture and 256x256 input
data, 3590 landslide traces were found in
Da Bac district (Fig. 4 - left). The identified
traces are not only located along roads but also
in remote areas or on hillsides. The high-
density areas could be found in the Northwest

g
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region of Da Bac district, observed in satellite
images from 2018 and 2019. It coincides with
the rainy season in the entire Northwest region
of Vietnam. In particular, landslide traces with
high density are located along streams and the
eastern part of the Da River valley.

Monthly Precipitation Data Across Landslide Events
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Interquartile range
Lower adiacent value

&
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Figure 4. Location of landslide traces detected from deep learning models (left) and their allocation in
each month of a year (right) in Da Bac, Hoa Binh province, Vietnam

Meanwhile, landslides around the Song
Da hydroelectric dam area have a lower
density, accounting for about 10%. It is also
a densely populated place in the research
area. Figure 4 (right) shows the density of
landslide traces by month. Accordingly,
landslide traces were numerous in many
main tourism corridors linking communes
with ecotourism locations within Da Bac,
which visitors frequent to explore homestays
and natural features. Various landslides were
found in trekking routes in the southern part
of the research area. The landslides along
these roads not only pose a threat to the
safety of transport but also directly influence
the stability of the community-based tourism
activities, which depend so much on the
availability of these roads. Thus, mapping
landslide-prone areas along tourist routes
would be vital for hazard management and
sustainable tourism development within the
district. This indicates that the number of
landslide traces increases from May to
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October, particularly in July, August, and
September. Rainfall during these months
reaching above 150-170 mm can be
considered the threshold for landslides here.
In October, as the storms retreated south of
Vietnam, the number of landslides in the area
also decreased.

3.2. Calibration and verification of machine
learning for landslide susceptibility mapping

Through analyzing the correlation between
20 variables affecting landslide hazards,
variables with poor correlation or interactive
effects with other variables were eliminated.
This elimination work is based on the analysis
of the AIC and BIC values. Thereby, the input
variables can be separated into three groups of
variables for the ML model development
(Appendix Al). The first group has all 19
input variables. The second group includes 14
variables after filtering out wvariables with
interaction effects. The third group filters out
variables with a correlation lower than 0.1.
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The nine key variables included will include
BSI, NDVI, NDBI, TIR, flow accumulation,
Slope, DEM, distance to streams, faults, and
roads. The correlation between this variable
and the possibility of landslides is presented
in Appendix A2. Accordingly, the variation of
the variables is limited and not entirely linear.
Some relatively linear negative correlations
appear in the variables "distance to rivers and
streams" and "distance to roads". Landslide
traces are found mainly near rivers, streams,

and roads, increasing the probability of
finding landslides in these areas. Appendix
A3 also shows the warning threshold for
landslides at other wvariables such as BSI,
NDVI, Slope, etc. This shows that applying
linear models in landslide risk assessment can
face many difficulties.

The results of developing 27 ML models in
landslide risk assessment are presented in
Table 1. Accordingly, most models have ACC
and AUC values above 80%.

Table 1. Model performance to assess landslide susceptibility in tourism routes

. s e Pos Pred | Neg Pred
No.| No. Variables Model ACC |Kappa |Sensitivity | Specificity Value Value AUC
1 9 Logistic Regression 0.84 | 0.68 0.86 0.81 0.82 0.86 0.91
2 9 Random Forest 0.90 | 0.80 0.90 0.90 0.90 090 [0.96
3 9 SVM 0.84 | 0.68 0.86 0.82 0.83 0.86 [0.92
4 9 KNN 0.73 | 0.45 0.73 0.72 0.72 0.73 0.92
5 9 LDA 0.84 | 0.68 0.82 0.86 0.86 0.82 0.91
6 9 Decision tree 0.85 | 0.70 0.85 0.85 0.85 0.85 0.86
7 9 PSO-CNN-64 0.85 | 0.70 0.86 0.84 0.84 0.86 |0.88
8 9 PSO-CNN-128 0.88 | 0.75 0.89 0.86 0.87 0.89 |0.88
9 9 PSO-CNN-256 0.88 | 0.75 0.88 0.87 0.88 0.88 |0.88
10 14 Logistic Regression 0.85 | 0.69 0.86 0.83 0.83 0.86 0.92
11 14 Random Forest 0.91 | 0.81 0.89 0.92 0.91 090 |0.96
12 14 SVM 0.85 | 0.70 0.86 0.84 0.84 0.86 [0.92
13 14 KNN 0.64 | 0.27 0.57 0.71 0.65 0.63 0.68
14 14 LDA 0.85 | 0.70 0.83 0.87 0.87 0.83 0.92
15 14 Decision tree 0.86 | 0.71 0.83 0.88 0.87 0.84 ]0.86
16 14 PSO-CNN-64 0.88 | 0.76 0.86 0.90 0.89 0.87 |0.86
17 14 PSO-CNN-128 0.88 | 0.76 0.87 0.89 0.89 0.87 |0.88
18 14 PSO-CNN-256 0.85 | 0.70 0.86 0.84 0.84 0.86 ]0.85
19 19 Logistic Regression 0.85 | 0.70 0.86 0.84 0.84 0.86 0.92
20 19 Random Forest 0.90 | 0.80 0.89 0.91 0.90 0.89 [0.96
21 19 SVM 0.85 | 0.71 0.86 0.85 0.85 0.86 [0.91
22 19 KNN 0.76 | 0.51 0.67 0.84 0.80 0.72 0.76
23 19 LDA 0.85 | 0.70 0.84 0.86 0.86 0.84 091
24 19 Decision tree 0.86 | 0.72 0.86 0.85 0.85 0.86 0.87
25 19 PSO-CNN-64 0.86 | 0.73 0.92 0.81 0.83 0.91 0.86
26 19 PSO-CNN-128 0.88 | 0.76 0.85 0.90 0.90 0.86 |0.88
27 19 PSO-CNN-256 0.88 | 0.76 0.90 0.86 0.87 090 |0.88

However, the Kappa index of the models
has apparent differences. The study indicated
nine models with a Kappa accuracy over 0.75.
In these models, three of them use nine
variables, three models use 14 variables, and
three models use 19 variables. The models
with the lowest performance utilize the KNN
structure, as this structure is unable to

reproduce the non-linearity between variables
in assessing landslide hazard. The ML
structural models used achieve high
performance, including RF and PSO-CNN. In
which the RF model has a Kappa index
greater than 0.8 in all cases, and other indexes
are approximately 0.9. It is also shown
through the ROC curve in Appendix A3.
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Finally, the RF model utilizes nine selected
input variables to construct a landslide
susceptibility map for subsequent steps. The
selection of the RF model is specifically
appropriate in the sphere of tourism
management since it guarantees both stability
and the simplicity of results interpretation.
With very few input variables and yet high
accuracy, this model can help managers
establish, within a minimal time frame, the
areas where there is a risk of landslides along
the main tourist routes and make the right
decision to implement the necessary safety
measures, without the need to work with
complex data sets. RF is the best instrument to
incorporate landslide risk assessment in
sustainable tourism development planning due
to the compromise between reliability and
practicality.

3.3 Monthly landslide susceptibility maps

After the ML model was completed, all
data on nine variables along tourist routes in
the Da Bac area, Hoa Binh province, were
included in the model to evaluate landslide
susceptibility. With an assessment based on

average rainfall, the high potential of the
landslide susceptibility is mainly concentrated
in the western region, specifically along inter-
district and inter-commune roads, and areas
with experiential tourist routes related to
mountain climbing and exploration travel. The
proportion of areas with a landslide
probability of over 50% accounts for more
than one-third of the study area. The central
part of the district (the area between points 1,
2, and 3 in Fig. 5) has an average
susceptibility level, indicating suitability for
residential ~ development. Regarding the
landslide points located along the roads, the
field survey revealed that the government has
implemented reinforcements to ensure the
safety of people ftraveling. However,
landslides still occur during the rainy season
(Sub-Figs. 1, 2, and 3 in Fig. 5). For tourist
routes spontaneously created by people, as
shown in Fig. 5, the treatment and

reinforcement of these routes are difficult due
to accessibility to the disaster area. It can be
observed throughout the western tourist route
and the outer eastern edge of the residential
area.

Levels of a landslide
hazard probability
B < 10%
[ 10-30%
[ 130-50%
[ 50-80%

Vo = & s - .
T B > s0%

Figure 5. Landslide susceptibility in tourism routines based on average precipitation

Through assessing landslide susceptibility

low before April (Fig. 6). In January,

in each month of the year, the probability of February, and December, the rainfall in this

this hazard occurring along tourist routes is
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district is usually less than 50 mm, making the
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probability of landslides very low. In March
and November, rainfall is about 50-100 mm,
and landslide susceptibility increases in some
areas, but in small parts with low probability.
From May to October, especially in July,
August, and September, landslides occur
frequently along tourist routes. Rainfall at this
time ranges from 150 to 350 mm. Landslide

warning zones are only scattered at a few
points in the west, along the Da River valley.
Most points have a landslide probability of
over 80%. This can be easily seen in Fig. 7.
On average, 15-17% of tourist routes in the
area are affected by landslides. In particular,
the months when landslides occur are a time
for tourism in the locality and in Vietnam.

Landslide
warning zones.

"’ Levels of a landslide hazard probability: [l <10% 10-30% [_] 30- 50% [ 50 - s0% [ > 80%

Figure 6. Landslide susceptibility in tourism routines based on monthly precipitation in Da Bac,
Hoa Binh province, Vietnam

Main 3-level landslide probability along the tourism routes in Da Bac, Hoa Binh
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Figure 7. Landslide susceptibility levels in tourism routines in each month in Da Bac,
Hoa Binh province, Vietnam

4. Discussions

4.1. Integrated landslide warning system in
tourism routes

Based on the development of two artificial
intelligence (Al) models to identify landslide

traces and assess landslide susceptibility, this
study proposes the development of an
integrated Al landslide warning system.
Importantly, timely landslide warnings require
a comprehensive and cohesive approach,
allowing for the prediction of landslide
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hazards every month. The increase in
precipitation and the number of rainy days
significantly changes the probability of
landslide hazards, as seen in Figs. 6 and 7. To
get high levels of precision and productivity,
this system must include geographical,
climatic, and human-made factors, with Al
technology.

In the integrated system, the first step
involves acquiring high-resolution satellite
imagery data from platforms such as Google
Earth Pro and Worldview-2, as done in
Section 2.2. The data has to be evaluated and
partitioned into smaller segments for the
purpose of training the model. Data
processing involves the identification of
landslide indicators via the use of field
observations and satellite data to generate
dependable and practical datasets. To achieve
a high level of accuracy in detecting
landslides, it is necessary to train the model
using processed data and techniques such as
image segmentation and data labeling, as done
in this research and other studies, including
Cheng et al. (2013) and Naveen et al. (2022).
Different advanced DL models like DeepLab-
v3 or U-Net with the ResNet-34 framework
proved their potential to identify landslide
traces on high-resolution satellite images in
this study.

Once the landslide traces were identified,
the computer must evaluate related factors,
including geology, lithology, topography,
hydrology, and artificial effects, to determine
the state of ancient landslide tracks. Assess
landslide risk by using indicators such as STI,
TRI, TWI, and SPI as done by Tien Bui et al.
(2019). This facilitates the identification of
high-risk areas and acts as input for ML
systems. The development of landslide
probability assessment models can be
achieved through SVM, RF, and Decision
Tree algorithms, as noted by Bui et al. (2012).
The model requires processing of data through
conditional factor analysis to achieve accurate
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predictions during its training phase, along
with assessments. The Al system performs
landslide detection functions by integrating
prediction models within its warning system
to anticipate impending landslide hazards. The
system  incorporates measurements  of
temperature alongside precipitation data to

establish  predictions about forthcoming
landslide  dangers, which it follows
persistently.

In the context of Da Bac district and
similar mountainous areas, 17% of the
detected landslide traces are located along
main transportation and tourism routes. It
posed a direct threat to road safety and created
disruptions for visitors traveling to ecotourism
villages, homestays, and cultural sites. As
such, it is essential to incorporate road-
network data into the Al-based warning
system to prioritize hazard alerts on parts of
the road that tourists use most often. In this
way, the system can not only help mitigate
disaster risks but also enhance the resilience
of tourism infrastructure and provide safer
access to destinations. The operating warning
systems  should  establish  immediate
capabilities to exchange information with
regulatory bodies and local communities for
proper preparation. Accordingly, this study
took on the challenging task of building an
artificial intelligence system that links
landslide identification to warning systems for
potential tourism benefits. Al integrates with
landslide condition factor analysis through
predictive warning systems to provide
opportunities for lower landslide risks and
reduced loss potential. It not only facilitates
natural catastrophe mitigation in time, but it

also fosters the sustainable tourism
development of areas susceptible to
landslides.

4.2. Monthly landslide warning for local
tourism routes in Hoa Binh province

The case study is a key landslide area in
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Hoa Binh province, which affects the tourism
development of the district. Its most
significant impacts are on infrastructure, such
as road damage, or on the tourism industry by
lowering tourism numbers due to fear of
landslides. For example, Ban Lac village was
severely affected, with tourism capacity in
2023 at a mere 60-70% and in 2024 at a
devastatingly low 10%. This study has
pointed out landslide hotspots over time and

space. Local authorities need to have
warnings and solutions to minimize
landslides, thereby contributing to safe

tourism. In terms of time, the peak months for
landslides are in the rainy season (May to
October), especially in July, August, and
September. Landslides become exceptionally
rare between November and April of the
upcoming year during the dry season period.
The study displays very comparable
findings to the research performed by Hoang
and Nguyen (2022) on the tourism climate
index (TCI). The research data indicate that
tourism safety levels vary throughout the year,
with the first four months offering ideal
weather conditions for tourism activities and

stable Lake Hoa Binh water levels,
accompanied by  minimal  geological
movements, resulting in secure tourism

conditions. This is also the springtime with
many festivals, so many visitors are coming to
Hoa Binh. The period from May to June
marks the beginning of the rainy season. At
this time, tourism activities can still take
place, but attention should be paid to early
flooding. From July to October is the peak of
the rainy and flood season, with warnings
about safety and limiting tourism activities.
The end of the year, from November to
December, also features pleasant weather,
with few landslides, making it a safe
environment for tourism activities. The risk
map can be applied to seasonal activities in
the context of tourism management. Speaking
of which, in the months (particularly in July-

September) when the weather is at its wettest,
adventure tourism like trekking or mountain
climbing should be restrained; instead,
cultural tourism, festivals, or water tourism to
Hoa Binh Lake should be promoted to be safe.
Ecotourism, community experiences, and
trekking can also be extended during the dry
months due to the low risk of landslides. In
terms of space, the study showed that
landslide warning zones are only scattered at a
few points in the west, along the Da River
valley. Most routes have a landslide
probability of over 80%. Such dangerous
locations occupy most of the critical road
networks, like provincial roads linking Hoa
Binh city with Da Bac and other upland
communes that are the main road networks
serving community-based tourism and
ecotourism sites. The local transport is not
only disrupted by landslides on these roads,
but also poses serious hazards to the tourists
visiting homestays, cultural villages, and
natural attractions. Therefore, landslide risk
information must be considered in the
planning of tourism routes to provide a safe
environment to visitors and ensure the
sustainability of road-based tourism activities.
To avoid these landslide points, tourists can
travel to Da Bac by waterway on Hoa Binh
Lake instead of by road, ensuring their safety.

4.3. Further database for the early warning
landslide system

Discovering evidence of landslides
requires a comprehensive understanding and
high-quality data. This study utilized multi-
temporal and multi-spatial satellite imagery
from different source platforms, as proposed
by Mohan et al. (2021) and Ghorbanzadeh et
al. (2022). High-resolution satellite imagery is
essential since the majority of landslide traces
are subtle and difficult to detect. The high
resolution of these data enables the detection
of subtle characteristics, such as topographic
irregularities and structural fractures, caused
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by changes in plant distribution. Identifying
landslides depends on these critical signs
found in the geological environment. The
processing method for DL models uses
dimension reduction on images by generating
64x64, 128x128, and 256%x256 pixel parts.
Researches thus far has failed to implement
this process. The sub-images function as tools
to reduce random data while improving the
detection of fine elements in images.

Field surveys are essential for validating
data accuracy, since they ensure that digital
information is not limited to images but
accurately reflects the actual conditions on the
ground. This approach provides the
authenticity of landslides exhibited on satellite
images by cross-referencing them with actual
conditions observed at researched landslide
locations. Training DL models with high-
quality information ensures data reliability
according to this method. Continued
modifications in sub-image dimensions,
ranging from 64x64 to 128x128 and 256256
pixels, help the DL model detect landslides at
different scales, from minor to extensive
features. Small subsampled images
demonstrate  apparent minor landslide
indications, while larger subsampled images
present the best capabilities for showing
minor landslide signs.

The landslide susceptibility assessment
demands data collection about geology,
together with soil composition and
topographic and hydrological conditions,
alongside human activities and geological
characteristics. Each research project selects
its own group of variables depending on its
focus area, which leads to different variables
ranging from six by Agboola et al. (2024) up
to 13 by Nguyen et al. (2024) and 15 by Tien
Bui et al. (2019). The evaluation process
requires precise selection and complete
examination of multiple potentially predictive
variables that aim to display landslide
potentials with accuracy. Slope, geological,
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and hydrological features are significant
determinants of the likelihood of landslides
occurring in an area. On the other hand, the
density of plants influences the stability of the
soil. The correlations among the components
allow eliminating some variables with the
least significant or highly correlated features,
therefore, controlling the data set and focusing
on the most relevant variables. Other studies
tend to omit this step, such as Sharma et al.
(2024) and Pham et al. (2022). The PCA
analysis proved that some variables, such as
proximity to roads and rivers, and
precipitation, have a substantial impact on the
likelihood of landslides. The ML techniques
in this study analyzed all these factors to
accurately simulate the complex relationships
between them and with landslide occurrences.
This database enables mapping by providing
an overall representation of the factors that
drive landslides, as well as by enabling the
accurate location of high-risk zones through
ML techniques. In addition, the structured
database can be shared with the tourism sector
to assist in risk communication and safe route
planning. Integration of tourism road and
destination maps and hazard data can enable
tourism operators to develop contingency
strategies and provide visitors with safer
tourism choices. This type of cross-sector data
sharing contributes to improving the
interconnection of  sustainable tourism
development and disaster risk reduction.

5. Conclusions

The paper proposes an Al-based early
warning system to predict landslide danger.
Firstly, DL detection enhanced detection
accuracy, making the models suitable for
landslide trace monitoring. Al-based landslide
detection employs high-resolution satellite
images and  DeepLab-v3  algorithms.
Secondly, an Al-based model can be used to
assess landslide susceptibilities based on
geological, topographic, hydrological, and



Dang Kinh Bac et al.

anthropological variables, utilizing a Random
Forest algorithm for assistance. By forecasting
monthly accidents, authorities can develop
strategic land-use plans, build infrastructure,
and create evacuation plans for sensitive sites.
The proposed system proved its optimal
performance in this study. According to the
system, tourists in the northern part of
Vietnam can travel from November to April,
which is doable in May and June, while
frequent rains limit visitation from July to
October. Many of the detected landslide-prone
areas coincide with main road corridors that
connect tourism destinations, homestay
villages, and cultural sites. Warnings along
these routes are critical because landslides not
only disrupt traffic but also directly endanger
tourists traveling by road to remote
attractions. Integrating route-specific hazard
information into the early warning system
ensures that tourism stakeholders and visitors
can adjust travel schedules, select alternative
routes, or shift to safer modes of transport.
Accordingly, the application of the whole
proposed system in landslide detection and
susceptibility assessment improves disaster
management and makes communities in
natural hazard zones safer.
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Appendix A

coefficients:
eEstimate std. Error z value Pr(>|z|)

(Intercept) 1.158e+01 8.772e-01 13.207 < 2e-16 ***
BSI 1.655e+01 1.333e+00 12.412 < 2e-16 *** coefficients:
NDVI -3.076e+00 2.687e-01 -11.450 < 2e-16 *** Estimate Std. Error z value Pr(>|z|)
NDBI -6.162e+00 1.340e+00 -4.600 4.23e-06 *** (Intercept) 1.217e+01 7.757e-01 15.691 < 2e-16 ***
LuLc 3.003e-01 3.278e-02 9.160 < 2e-16 *** BSI 1.678e+01 1.344e+00 12.488 < 2e-16 ***
TIR 2.463e+00 4.027e-01 6.116 9.60e-10 *** NDVI -2.900e+00 2.629e-01 -11.032 < 2e-16 ***
STI 6.073e-03 4.787e-03  1.269 0.204533 NDBI -6.428e+00 1.356e+00 -4.740 2.14e-06 ***
SPI 5.524e-02 3.117e-02 1.772 0.076392 . — LULC 2.926e-01 3.199e-02 9.146 < 2e-16 ***
:::1: i.iigagi 3-;33&33 l(z}-fgg 0<0(2):;15-§ :_ 1R 2.776e+00 3.836e-01 _ 7.237 4.58e-13 *** |
-1.112e- .107e- -2.7 2 7 SPI §.274e-02 2.967e-02  2.789 0.00529 **
f}owacc ;.ggge-z Ii.:g:ls.e-x i-:gg g-g;i:;g A Fault 2.213e+03 2.101e+02 10.531 < 2e-16 *** |
P1_Cur . 600e+ +405e+ . . TWI -7.684e-02 3.719e-02 -2.066 0.03883 *
Pr_Cur -3.600e+04 2.405e+04 -1.497 0.134452 flowacc 3.238e-04 1.121e-04 2.888 0.00388 **
curvature -3.600e+04 2.405e+04 -1.497 0.134452 » slope 7.356e-02 4.684e-03 15.705 < 2e-16 ***
slope 7.%9;e-g§ ;.OZEe-gi 1;-332 0<0§§;l: i River -3.611e-03 7.028e-04 -5.138 2.78e-07 #%*
DEM 4.712e- -149e- -1 . 16 road -2.108e-04 6.443e-05 -3.271 0.00107 **
As_pect 3.799e-04 4.138e-04 0.918 0.35863_3. —» Pre_Avg -1.193e-01 5.699e-03 -20.931 < 2e-16 ***
:w:r ; ::;e-g: 2.;3&2-3: ~§-:;; g-g;;g; e [GeoTypez 1.208e-01 1.204e-02 11.689 < 2e-16 =** |
oal =-2. - . 7e= =-3. . e
Pre_Avg -1.137e-01 6.192e-03 -18.360 < 2e-16 *** signif. codes: 0 ****' 0,001 ‘**’ 0.01 '*" 0.05 ‘.' 0.1 * ' 1
GeoType2 1.411e-01 1.208e-02 11.677 < 2e-16 ***

signif. codes: 0 ‘*##*=' 0,001 ‘="' 0.01 '*" 0.05 *‘." 0.1 * "1

Figure 1.1. Elimination process to select suitable variables for landslide susceptibility assessment
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Figure 2.2. The relation between the most crucial conditioning factors to assess landslide susceptibility

Al



Dang Kinh Bac et al.

ROC Curves for Different Models

1.00

True Positive Rate
(=] o
W -~
=1 n

o
]
wm

ROC Curves for Different Models

1.00

0.75

True Positive Rate
o
8

o
n
wm

9 input variables v‘ 14 input variables
000 - z 000 ,-°
0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 075 1.00
False Positive Rate False Positive Rate
— Decision Tree — LDA — PSO-CNN-128 — PSO-CNN-64 — SVM
Model
— KNN — Logistic Regression — PSO-CNN-256 — Random Forest

Figure 3.3. ROC curves of machine learning models using 9 and 14 variables in landslide susceptibility
assessment

Appendix B: Brief description of deep
learning model to detect landslide traces
published in the paper titled: "Deep learning
models integrating multi-sensor and temporal
remote sensing to monitor landslide traces in
Vietnam" of our research group, published in
the "International Journal of Disaster Risk
Reduction" journal in 2024.

The research contains three essential stages
to follow. The first stage is the identification
of landslide indicators. An in-depth analysis
of field observations and satellite data was
carried out as part of this process. Field
investigators were used to identify tension
cracks with topographical anomalies and
vegetation patterns existing within landslide
areas (Dang et al., 2024b). The authors used
landslide indicators correctly identified in
Worldview-2 satellite images to serve as
effective training data for DL models.

Training data preparation constitutes the
second stage of the procedure. Research
investigators specifically chose six
Vietnamese regions prone to landslides (Yang
and Chen, 2010). A group of landslide-prone
areas in Vietnam was documented through

All

high-resolution satellite imagery obtained
using Google Earth Pro's Worldview-2
technology. The authors divided the collected
images into smaller ones to increase the
practical usage of the training and validating
data. The research method served to identify
landslide indicators on the satellite imagery.
Based on an optimal input database, the
authors achieved success in designing a robust
DL model in the third stage by implementing
a complete data preparation strategy.
DeepLab-v3 with  ResNet-34 setup
demonstrated the highest effectiveness in
detection tasks through its 0.213 Dice
coefficient and 96.8% accuracy (Dang et al.,
2024a; Ngo et al., 2025). The authors
prevented overfitting by implementing a
testing dataset, even though they trained with
validation data. The input size of 256x256
images enables better data processing for
classification, but it also causes simplified
landslide traces to become indistinguishable.
The detection of large-scale motion was more
accurate for 64x64 images, although it failed
to capture details (Dang et al., 2022).
DeepLab-v3  with  ResNet  backbones
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displayed superior performance to the
combination of VGGI1 and PSPNet. In
landslide detection applications, DeepLab-v3
proves to be an essential DL approach that
successfully identifies traces according to Yao
et al (2019). Once the training model was
completed, a continuous operation mode
enabled DeepLab-v3 to identify landslides
that had not been involved in its training
phase (Chen et al., 2018).

Appendix C: Description of each type of
landslide conditioning factors

Firstly, lithological and geological factors,
including characteristics of weathering crust
and fault density, play a significant role in
determining the likelihood of a Ilandslide
(Borrelli et al., 2014). Strong, solid materials
are less likely to cause landslides compared to
weak, fragmented ones. The proximity to
faults and lineaments, which are weak points
in the Earth's crust, also increases landslide
hazard (Tu et al., 2016). Areas close to these
zones are more prone to instability and
breaking. In a plan to build a new road
through a mountainous region, a road-
construction company conducted a geological
survey and found that one proposed route
passes through an area with numerous
lineaments (Ghasemian et al., 2020). The
scientists might modify the roads when they
encounter weak geological formations,
ensuring safety for the road while also
protecting residents and visitors.

The properties of geologic strata serve as
fundamental indicators to determine the
chances of slope failure developing, according
to Malet and Maquaire (2012) and Ren
(2015). Fine-grained clay soils retain more
water than coarse-grained sand soils because
clay holds water more effectively, yet sand
drains better. Therefore, the clay-based soils
have higher landslide risk potential. By
including information about soil roughness,
the research can yield additional findings, as
this factor determines how water interacts
with soil and affects the displacement process

(Tarolli et al., 2014). The comprehensive
study of these factors improves predictive
accuracy in models that lead to better
landslide prevention methods.

Secondly, geomorphological factors, such
as slopes with high angles, tend to collapse
due to the enhanced gravitational force acting
upon them (V. A. Tran et al., 2024). Slopes
with reversed curved (concave) forms attract
water and debris, increasing their instability
levels, whereas slopes with forward curved
(convex) forms demonstrate better stability.
Therefore, the Sediment Transport Index
(STI) uses topographical features to measure
sediment mobility by evaluating surface area
along with slope gradient. Higher STI values
suggest a greater likelihood of landslides due
to material movement. The Terrain
Ruggedness Index (TRI) indicates land
complexity, with rougher terrain generally
having a higher risk of landslides.

Thirdly, hydrological factors, such as the
Topographic Wetness Index (TWI), are
crucial in determining the amount of water in
the soil (Pham et al.,, 2022). Firstly, TWI
provides slope water accumulation evaluation
and produces elevated indicators that indicate
increased landslide risk. The Stream Power
Index (SPI) evaluates stream properties to
detect erosion potential through its values,
which rise as landslide threats expand in
streamside areas. The analysis requires
consideration of two critical factors, which
include the distance to streams as well as the
rainfall intensity. The risk for erosion is
elevated in areas adjacent to streams. The
effects of heavy rainfall include soil
saturation, which pushes up water pressure
and produces landslides throughout the
territory. Weather records serve to improve
the analysis when they are made available.

Fourthly, precipitation acts as a major
triggering factor in landslides, which can
cause sudden instability of slopes in a very
short time. Quantifying and analyzing the
relationship between rainfall and landslide
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occurrence is a crucial foundation for
developing effective early warning models.
This research utilized data collected by the
National  Hydrometeorological  Service's
monitoring system, which included records
spanning multiple years, both daily and
monthly. Rainfall was grouped into (i) the
periods when landslides occur (generally June
to September) and (ii) those with no
landslides. At the actual landslide events -
collected from remote sensing and field
surveys - rainfall information is replicated and
specifically labeled as "landslide-triggering
rainfall". This replication enhances the
training sample with  input  signals
characteristic of high-risk rainfall events,
while providing a clear context for the DL
model to differentiate between normal and
dangerous rainfall. This approach not only
helps improve the sensitivity and accuracy of
the model but also aims at the long-term goal
of building a real-time landslide prediction
system where rainfall is integrated as a key
input signal, contributing to improving early
warning capabilities and reducing disaster
risks in vulnerable mountainous areas.

Lastly, anthropogenic influences, which
refer to human activities, have a substantial
impact on the stability of slopes (Kayastha et
al., 2013). Changes in land use may modify
the likelihood of landslides. Plant root
systems, together with other vegetation, scale
down slope deterioration and fortify earth
materials, so that landslides occur less
frequently. Landslide frequency increases
when vegetation disappears due to activities
such as deforestation or specific farming
systems, as soil stability decreases. Kinds of
human activities that either raise slopes'
weight limits or cause water flow changes
make landslides more dangerous. Highway
development (e.g., opening new roads,
building homestays) serves as a key
demonstration for tourism development
because it has the power to modify regional
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water drainage systems and might destabilize
adjacent slopes. The positions nearest to roads
experience higher landslide vulnerability due
to their location.

Appendix D: Details about machine

learning  development for mapping
landslide susceptibility
1. Random Forest (RF)

Random Forest demonstrates excellent

capability when processing data with high
dimensions, often applied in landslide
susceptibility mapping (Abdo and Richi,
2024). As an ensemble method, Random
Forest operates by lowering information
variance and produces models that survive
data errors effectively. The algorithm can
forecast landslide occurrences with unlisted
information through these trends. Random
Forest constructs an ensemble model through
the combination of many decision trees (Le et
al., 2022). This ensemble approach leverages
the predictive power of multiple trees. The
development of the forest originates from
picking random predictor variables (features)
throughout the training data. The introduction
of randomness reduces model variance while
preventing it from fitting exclusively to the
training data, which in turn causes the model
to lose its ability to generalize (Sannigrahi et
al., 2019). The ensemble prediction of
Random Forest trees improves data quality by
averaging multiple trees, which reduces
overfitting and eliminates data anomalies. The
model achieves better stability and a wider
application range through this averaging
technique. Random Forest shows exceptional
capability to determine intricate patterns
between different variables that impact
landslide susceptibility. The algorithm uses
many  predictor  variables alongside
established landslide locations to find
relationships between various variables.

The authors performed parameter fine-
tuning of the Random Forest model for
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constructing landslide susceptibility maps.
The crucial elements that guide forest
prediction include both tree depth and the
number of trees used. The model stability and
variance reduction benefit from more tree
implementation in the system at the cost of
lengthened training times and increased
computational expenses (Pham et al., 2024).
Research-based assessments of different
hyperparameters determine the best selection
of optimal trees. Caret operates through
"Maximum Depth" to determine maximum
tree depth levels. Deep decision trees detect
advanced relationships in data, but they
become more likely to create an overfitting
model. Advantageously shallow trees avoid
overfitting but can fail to identify distinct
patterns. The maximum depth value needs
careful adjustment because it supports model
performance retention. Therefore, the authors
selected 1000 branches as the most suitable
value after conducting their tests. The
automatic selection of the best model occurred
during the loop test process.

2. Support Vector Machines (SVM)

SVM models represent a strong ML
technique that helps generate landslide
susceptibility maps by Bui et al. (2012b). The
SVM  models establish the optimal
hyperplane, which identifies the most separate
position between landslide data points and
non-landslide groups with maximum space
between them. The margin in support vector
machines contains support vectors as its
boundary points that represent data points
closest to the hyperplane in each category
(Bui et al.,, 2012). SVMs achieve accurate
prediction results on unobserved data because
they can determine the optimal hyperplane
that separates the data. The mapping process
for landslide influencing factors utilizes
higher-dimensional spaces while kernel
functions reveal hidden nonlinear attribute
relations between features. The methodology
maintains the broad applicability of the model

through space optimization, thereby avoiding
specialization for the training data. Feature
scaling or normalization techniques should be
used with SVMs because prominent features
often dominate model decisions. Random
Forest shares a similar advantage with class
scaling, as it enhances model efficiency when
modeling unbalanced data samples.

During SVM training, three essential
parameters must be optimized, starting with
the Gamma Parameter (y) and moving to the
Cost Parameter (C) and ending with the
Kernel Function (Nguyen et al., 2022). The
kernel function defines both the data
transformation process and the SVM
separation methods. Radial basis functions,
linear functions, and polynomial functions
represent the standard kernel functions in
SVM implementation. Groups choose their
kernel function after thorough data
relationship analysis, which results in
reflective experimental determination. The
Cost Parameter (C) helps achieve the best
performance balance between error prevention
and creating a large margin. The margin
increases with greater values of C, although it
can potentially trigger overfitting conditions.
When the C value decreases, classification
errors become more probable; yet, the model
demonstrates better generalizing capabilities.
The Gamma Parameter (y) enables a
controller mechanism to determine which data
points will shape the decision boundary.
When gamma increases in magnitude, the
nearby data points become more influential,
thus causing the decision boundary to become
more intricate. Smoothing of the decision
boundary occurs when the gamma parameter
is set low since it lessens the effects of single
points on its structure. The authors selected 90
as the C value plus y at 0.4 as the ideal
parameters for this analysis. SVMs achieve
effective landslide susceptibility mapping
when these adjustable parameters are adjusted
to predict landslide hazards based on various
influencing factors.
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3. K-Nearest Neighbors (KNN)

The KNN model operates as a user-
friendly and effective system for creating
landslide susceptibility maps (Nguyen et al.,
2024). The system examines newly-
introduced data points by evaluating their
associations to specific labels present among
the k closest neighboring training samples.
The KNN model preserves all attributes of
training data points accompanied by their
designated landslide classification.

Based on new data entries, the model
determines its distances from its k closest
neighbors in the training set through
measurements such as Euclidean distance (Ma
et al.,, 2021). The model classifies new data
points as either landslide or non-landslide
through the decision of its k nearest neighbor
members. The classification decision for new
data points emerges from the combined
influence of training data points that most
closely resemble it. The model's performance
can be improved when dealing with
imbalanced landslide data by combining class
scaling with less sensitive distance measures
for the main class. The successful training of
KNN requires a careful selection between the
number of neighbors (k) and the appropriate
distance measure. During classification
operations, k defines the number of near
neighbors that the system will assess. A high
k value minimizes data noise yet causes less
accurate classifications across the dataset.
Data patterns that occur locally are more
likely to be identified when K values remain
small, yet risks exist because of noise
contamination. Cross-validation is used in this
research to determine the suitable k value
selection.

4. Linear Discriminant Analysis (LDA)

The traditional usage of LDA models
enables researchers to map landslide
susceptibility (Pham et al.,, 2016). The
separation criteria for linear data triggers LDA
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to conduct effective class division of two or
more distinct data points. The processing
requirements of LDA make it suitable for
handling extensive datasets, as it requires
minimal computational power the procedure
known as LDA functions to reduce datasets
that contain multiple features. Through
identifying the fundamental variations
between different classes, LDA produces a
subset of essential features that enhances
classification effectiveness. In landslide
susceptibility mapping, areas are categorized
into landslide-prone and non-landslide-prone
regions, which are then compared based on
various input factors influencing them. In this
study, the objective is to identify linear
changes that minimize differences within
"landslide" and "non-landslide" classes while
maximizing separation between them. A
dimensionality reduction technique called
Principal Component Analysis (PCA),
combined with other approaches, should be
used to preprocess datasets with many
features before executing LDA. PCA
identifies uncorrelated feature subsets that
describe most of the original data variations to
enhance the overall model performance. The
evaluation of input data must be done
thoroughly to maintain proper adherence to
regularity and separability principles for
landslide hazards.

5. PSO-CNN

Syulistyo et al. (2016) developed PSO-
CNN by integrating the Particle Swarm
Optimization  (PSO)  algorithm  with
Convolutional Neural Network (CNN) for
their application. This particular method
combines advantages from both techniques to
boost CNN performance and operational
efficiency, specifically when used in fields
involving image processing and computer
vision. The PSO is a stochastic optimization
approach that is based on the social behavior
of birds flocking or fish schooling. In the
PSO, a group of particles iteratively explores
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a multidimensional search space to optimize a
specific objective function. Each particle
effectively searches and utilizes the search
space by using its own most optimal known
location and the best-known position of
neighboring particles. Whereas CNNs are a
specific sort of deep neural network designed
specifically  for  processing  structured
matrices. CNNs construct layers of
interconnected neurons by using
convolutional  operations, pooling, and
nonlinear activations. This enables them to
learn hierarchical representations of the input
data. Such a design lets them create a
hierarchical representation of input data,
which results in learning. The network
generates substantial performance outcomes
when utilized in image segmentation, along
with object detection and image classification
operations.

To assess the landslide susceptibility in
this study, the PSO-CNN was chosen to
potentially optimize crucial parameters,
including weights, biases, and architectural
choices (Devarakonda and Bozic, 2016). The
typical training of CNNs primarily relies on
gradient-based algorithms, particularly with
stochastic gradient descent (SGD). However,
SGD got trapped in local minima or
encountered difficulties in determining the
optimal hyperparameters. PSO-CNN
addresses these challenges by using the global
search capability of PSO to discover enhanced
combinations of CNN parameters. The
designed CNN utilizes ReLU activation
functions in combination with three 1D
convolutional layers, which must precede max
pooling layers. The model proceeds with a
flatten layer that reshapes its 2D output to
create a one-dimensional vector. Two dense
layers follow the previous ones before the
SoftMax activation function finishes the
classification process. By adjusting its
hyperparameters, namely the learning rate and
batch size, the performance of the CNN may
be improved (Wang et al., 2020). The

technique handles CNN model construction
followed by its training process using
specified parameters. The algorithm obtains
the negative maximum validation accuracy
before using it as an optimization target for
Particle Swarm Optimization (PSO). The PSO
optimization strategy searches the
hyperparameter space to identify the optimal
learning rate values, along with the best batch
size values. The CNN model was trained in
100 loops using the identified optimum
hyperparameters, and its performance was
evaluated on validation data once these
parameters were determined. The model's
predictions are converted into class labels and
assessed using metrics such as the area under
the Curve (AUC) of the ROC curve and a
confusion matrix. These values provide a
thorough  evaluation of the model's
classification accuracy and are explained in
the next section.

Appendix E: The description of each
measurement point includes the following
definition

The beginning step determines accuracy by
dividing correct predictions by the total
number of evaluation data samples. The
authors utilized this method under expected
conditions where data classes remain well-
balanced amongst equal sample numbers. The
accuracy value emerges from this calculation
formula:

ACC = (M
Total number of samples

Model precision enables better prediction

of actual labels from expected outcomes, thus

providing a general evaluation of model

effectiveness. Additionally, the statistical

metric known as Kappa determines the actual

Number of correct predictions

measurement accuracy in reference to
potential random precision levels. The
computation is as follows:

K = Pobserved — Pchance (2)

1= Pchance
The Kappa equation demonstrates the
relationship between P,pservea and Pepgnce
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shows the actual accuracy and the expected
accuracy from random selection. A Kappa
score approaching 1 aligns with high accuracy
in the model, but a score approaching 0
establishes that agreement aligns with random
chance levels. The calculation helps evaluate
the dependability of the model beyond its
numerical accuracy levels.

The model demonstrates enhanced
landslide detection capabilities, as it delivers
superior sensitivity values (equivalent to the
true positive rate), indicating its capacity to
recognize actual events accurately. The
sensitivity calculation requires the application
of this formula:

e True positives
Sensitivity = il , 3)
True positives — False negatives

Specificity measures the True Negative
Rate, which indicates how well the model
recognizes genuine negative instances. This
research demonstrates the model's capacity to
accurately detect areas that do not have a
landslide risk. The calculation depends on this

mathematical formula:
True negatives
“4)

Specificity = _ —
True negatives — False positives
The conditional accuracy of positive

predictive value (PPV) determines how many

AVIII

correct forecasts exist among all optimistic
predictions from the model. The model
demonstrates reliable accuracy in landslide
prediction when the PPV value is high, as this
indicates accurate optimistic predictions. The
calculation for PPV contains the following
mathematical relationship:

PPV = Tr.ue positives _ (5)
True negatives + False positives
When calculating Negative Predictive
Value, the percentage of negative predictions
that turn out to be accurate is measured. The
model demonstrates high reliability in
negative prediction because it accurately
identifies areas free from landslides according
to a larger value. The calculation of NPV
value uses this equation:

NPV = Trlfe negatives _ (6)
True negatives + False positives
Lastly, the AUC-ROC measurement

defines the area under the curve of the
Receiver Operating Characteristic (ROC). The
ROC curve plots the true positive rate against
the false positive rate at different threshold
values. Models display strong abilities in
predictions between positive and negative
samples when their AUC values change from
zero to one.





