A closed-form solution for free vibration of multiple cracked Timoshenko beam and application

Nguyen Tien Khiem, Duong The Hung
Author affiliations

Authors

  • Nguyen Tien Khiem Institute of Mechanics, VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam
  • Duong The Hung Thai Nguyen University of Technology, Vietnam

DOI:

https://doi.org/10.15625/0866-7136/9641

Keywords:

Timoshenko beams, multiple cracked beams, natural frequencies, sensitivity analysis

Abstract

A closed-form solution for free vibration is constructed and used for obtaining explicit frequency equation and mode shapes of  Timoshenko beams with arbitrary number of cracks. The cracks are represented by the rotational springs of stiffness calculated from the crack depth.  Using the obtained frequency equation, the sensitivity of natural frequencies to crack of the beams is examined in comparison with the  Euler-Bernoulli beams. Numerical results demonstrate that the Timoshenko beam theory is efficiently applicable not only for short or fat beams but also for the long or slender ones. Nevertheless, both the theories are equivalent in sensitivity analysis of fundamental frequency to cracks and they get to be different for higher frequencies.

Downloads

Download data is not yet available.

References

I. Elishakoff, J. Kaplunov, and E. Nolde. Celebrating the centenary of Timoshenko’s study of effects of shear deformation and rotary inertia. Applied Mechanics Reviews, 67, (6), (2015). doi:10.1115/1.4031965.

L. Majkut. Free and forced vibrations of Timoshenko beams described by single difference equation. Journal of Theoretical and Applied Mechanics, 47, (1), (2009), pp. 193–210, http://ptmts.org.pl/jtam/index.php/jtam/article/view/v47n1p193.

I. Karnovsky and O. Lebed. Formulas for structural dynamics: tables, graphs and solutions. Mc-Graw Hill, Inc., (2000).

T. Kocaturk and M. Simsek. Free vibration analysis of Timoshenko beams under various boundary conditions. Journal of Engineering and Natural Sciences, 1, (2005), pp. 30–40, http://eds.yildiz.edu.tr/ArticleContent/Journal/sigma/Volumes/2005/Issues/Regular-1/YTUJENS-2005-23-1.311.pdf.

R. D. Adams, P. Cawley, C. J. Pye, and B. J. Stone. A vibration technique for non-destructively assessing the integrity of structures. Journal of Mechanical Engineering Science, 20, (2), (1978), pp. 93–100. doi:10.1243/jmes jour 1978 020 016 02.

R. Y. Liang, J. Hu, and F. Choy. Quantitative NDE technique for assessing damages in beam structures. Journal of Engineering Mechanics, 118, (7), (1992), pp. 1468–1487. doi:10.1061/(asce)0733-9399(1992)118:7(1468).

Y. Narkis. Identification of crack location in vibrating simply supported beams. Journal of Sound and Vibration, 172, (4), (1994), pp. 549–558. doi:10.1006/jsvi.1994.1195.

T. G. Chondros, A. D. Dimarogonas, and J. Yao. A continuous cracked beam vibration theory. Journal of Sound and Vibration, 215, (1), (1998), pp. 17–34. doi:10.1006/jsvi.1998.1640.

N. T. Khiem and T. V. Lien. A simplified method for natural frequency analysis of a multiple cracked beam. Journal of Sound and Vibration, 245, (4), (2001), pp. 737–751. doi:10.1006/jsvi.2001.3585.

N. T. Khiem and H. T. Tran. A procedure for multiple crack identification in beam-like structures from natural vibration mode. Journal of Vibration and Control, 20, (9), (2014), pp. 1417–1427. doi:10.1177/1077546312470478.

S. Caddemi and I. Calio. Exact closed-form solution for the vibration modes of the Euler–Bernoulli beam with multiple open cracks. Journal of Sound and Vibration, 327, (3), (2009), pp. 473–489. doi:10.1016/j.jsv.2009.07.008.

N. T. Khiem and T. T. Hai. A closed-form solution for free vibration of beams with arbitrary number of cracks. In Proceedings of the Scientific Conference dedicated to 35th Anniversary of Vietnam Academy of Science and Technology, Vol. 1, Hanoi, Vietnam, (2010). pp. 30–42.

T. C. Tsai and Y. Z.Wang. Vibration analysis and diagnosis of a cracked shaft. Journal of Sound and Vibration, 192, (3), (1996), pp. 607–620. doi:10.1006/jsvi.1996.0209.

S. P. Lele and S. K. Maiti. Modelling of transverse vibration of short beams for crack detection and measurement of crack extension. Journal of Sound and Vibration, 257, (3), (2002), pp. 559–583. doi:10.1006/jsvi.2002.5059.

Q. S. Li. Vibratory characteristics of Timoshenko beams with arbitrary number of cracks. Journal of Engineering Mechanics, 129, (11), (2003), pp. 1355–1359. doi:10.1061/(asce)0733-9399(2003)129:11(1355).

J. A. Loya, L. Rubio, and J. Fernández-Sáez. Natural frequencies for bending vibrations of Timoshenko cracked beams. Journal of Sound and Vibration, 290, (3), (2006), pp. 640–653. doi:10.1016/j.jsv.2005.04.005.

A. S. J. Swamidas, X. Yang, and R. Seshadri. Identification of cracking in beam structures using Timoshenko and Euler formulations. Journal of Engineering Mechanics, 130, (11), (2004), pp. 1297–1308. doi:10.1061/(asce)0733-9399(2004)130:11(1297).

K. Aydin. Influence of crack and slenderness ratio on the eigenfrequencies of Euler–Bernoulli and Timoshenko beams. Mechanics of Advanced Materials and Structures, 20, (5), (2013), pp. 339–352. doi:10.1080/15376494.2011.627635.

N. Khaji, M. Shafiei, and M. Jalalpour. Closed-form solutions for crack detection problem of Timoshenko beams with various boundary conditions. International Journal of Mechanical Sciences, 51, (9), (2009), pp. 667–681. doi:10.1016/j.ijmecsci.2009.07.004.

S. Fekrazadeh and N. Khaji. An analytical method for crack detection of Timoshenko beams with multiple open cracks using a test mass. European Journal of Environmental and Civil Engineering, 21, (1), (2017), pp. 24–41. doi:10.1080/19648189.2015.1090929.

Downloads

Published

27-12-2017

Issue

Section

Research Article