ASSOCIATED EQUATIONS AND THEIR CORRESPONDING RESONANCE CURVE

Nguyen Van Dinh
Institute of Mechanics

In the theory of nonlinear oscillations, in order to identify the resonance curve we usually try to eliminate the dephase θ in the equations of stationary oscillations. We obtain thus a certain frequency-amplitude relationship.

In simple cases when the mentioned equations contain only and linearly the first harmonics $(\sin \theta, \cos \theta)$ the elimination of θ is elementary, by using the trigonometrical identity $\sin ^{2} \theta+\cos ^{2} \theta=1$.

In general, high harmonics $(\sin 2 \theta, \cos 2 \theta$, etc.) are present. Consequently the expressions of $\sin \theta, \cos \theta$ are cumbersome or do not exist and the analytical elimination of θ is quite inconvenient or impossible. For this reason, to identify the resonance curve of complicated systems, we use the numerical method.

Below, intending to develop the analytical method, we shall propose a procedure enabling us to transform the "original" complicated equations of stationary oscillations into the so-called associated ones, only and linearly containing $\sin \theta$, $\cos \theta$. The equivalence of the original and associated equations will be treated and the associated resonance curve-that is determined by the associated equations-will be analyzed

The discussion will be restricted to a simple practical case in which, beside $\sin \theta$ and $\cos \theta$, only $\sin 2 \theta$ and $\cos 2 \theta$ are present. Nevertheless, the method proposed and the results obtained can be generalized.
§1. System under consideration. The elimination of 2θ
Let

$$
\begin{align*}
& \dot{a}=\varepsilon f_{0}(\omega, a, \theta) \tag{1.1}\\
& a \dot{\theta}=\varepsilon g_{0}(\omega, a, \theta)=\varepsilon\left\{P_{0} \sin \theta+C_{01} \cos \theta+M \sin 2 \theta\right\} \\
&\left.a+R_{01} \sin \theta+K_{01} \cos \theta+M \cos 2 \theta\right\}
\end{align*}
$$

be the averaged differential equations governing the oscillating system of interest,
where: a, θ are amplitude and dephase angle, respectively; ω is the frequency; overdots denote the derivation relative to time $t ; \varepsilon>0$ is a small formal parameter; $P_{0}, Q_{0}, S_{0}, C_{01}, R_{01}, K_{01}$ are polynomials in ω, a.

Constant amplitude and dephase of stationary oscillations satisfy the equations:

$$
\begin{align*}
& f_{0}=P_{0}+S_{01} \sin \theta+C_{01} \cos \theta+M \sin 2 \theta=0, \tag{1.2}\\
& g_{0}=Q_{0}+Q_{01} \sin \theta+K_{01} \cos \theta+M \cos 2 \theta=0
\end{align*}
$$

The equations (1.2) will be called "original" ones. They determine the "true" "original" resonance curve-denoted by C_{0}.

We use the following two step procedure to eliminate $(\sin 2 \theta, \cos 2 \theta)$: First, we form the equations, equivalent to (1.2) and of the same structure as (1.2)

$$
\begin{align*}
f_{1} & =f_{0} \cos \theta-g_{0} \sin \theta= \\
& =P_{1}+S_{11} \sin \theta+C_{11} \cos \theta+S_{12} \sin 2 \theta+C_{12} \cos 2 \theta=0 \\
g_{1} & =f_{0} \sin \theta+g_{0} \cos \theta= \tag{1.3}\\
& =Q_{1}+R_{11} \sin \theta+K_{11} \cos \theta+R_{12} \sin 2 \theta+K_{12} \cos 2 \theta=0
\end{align*}
$$

where:

$$
\begin{gather*}
P_{1}=\frac{1}{2}\left(C_{01}-R_{01}\right) ; \quad S_{11} M-Q_{0} ; \quad C_{11}=P_{0} \\
\left.S_{12}=\frac{1}{2}\left(S_{01}-K_{01}\right) ; \quad C_{12}=\frac{1}{2} C_{01}+R_{01}\right) \tag{1.4}\\
Q_{1}=\frac{1}{2}\left(S_{01}+K_{01}\right) ; \quad R_{11}=P_{0} ; \quad K_{11}=M+Q_{0} \\
R_{12}=\frac{1}{2}\left(C_{01}+R_{01}\right) ; \quad K_{12}=\frac{1}{2}\left(K_{01}-S_{01}\right)
\end{gather*}
$$

Then, we choose suitable combinations of the form:

$$
\begin{align*}
& \underline{f}=p_{10} f_{0}+q_{10} g_{0}+p_{11} f_{1}+q_{11} g_{1}=0 \\
& g=p_{20} f_{0}+q_{20} g_{0}+p_{21} f_{1}+q_{21} g_{1}=0 \tag{1.5}
\end{align*}
$$

Evidently, f does not contain $\sin 2 \theta, \cos 2 \theta$ if:

$$
\begin{array}{r}
M \cdot p_{10}+S_{12} \cdot p_{11}+R_{12} \cdot q_{11}=0 \\
M \cdot q_{10}+C_{12} \cdot P_{11}+K_{12} \cdot q_{11}=0 \tag{1.6}
\end{array}
$$

We can choose, for instance:

$$
\begin{equation*}
p_{10}=S_{12} ; \quad p_{11}=-M ; \quad q_{10}=C_{12} ; \quad q_{11}=0 \tag{1.7}
\end{equation*}
$$

Similarly, g does not contain $\sin 2 \theta, \cos 2 \theta$ if we choose:

$$
\begin{equation*}
p_{20}=C_{12} ; \quad p_{21}=0 ; \quad q_{20}=-S_{12} ; \quad q_{21}=-M \tag{1.8}
\end{equation*}
$$

Finally, we obtain the following equations, which do not contain $\sin 2 \theta, \cos 2 \theta$:

$$
\begin{align*}
f & =S_{12} f_{0}+C_{12} g_{0}-M f_{1}= \\
& =\left(S_{12}-M \cos \theta\right) f_{0}+\left(C_{12}+M \sin \theta\right) g_{0}=0 \\
g & =C_{12} f_{0}-S_{12} g_{0}-M g_{1}= \tag{1.9}\\
& =\left(C_{12}-M \sin 2 \theta\right) f_{0}-\left(S_{12}+M \cos 2 \theta\right) g_{0}=0
\end{align*}
$$

or:

$$
\begin{align*}
& f=A \sin \theta+B \cos \theta-E=0 \tag{1.10}\\
& g=G \sin \theta+H \cos \theta-K=0
\end{align*}
$$

where:

$$
\begin{array}{ll}
A=S_{12} S_{01}+C_{12} R_{01}-M S_{11} ; & B=S_{12} C_{01}+C_{12} K_{01}-M C_{11} \\
E=M P_{1}-S_{12} P_{0}-C_{12} Q_{0} ; & K=M Q_{1}-C_{12} P_{0}+S_{12} Q_{0} \tag{1.11}\\
G=C_{12} S_{01}-S_{12} R_{01}-M R_{11} ; & H=C_{12} C_{01}-S_{12} K_{01}-M K_{11}
\end{array}
$$

The equations (1.10) will be called associated ones. They determine the so-called "associated" resonance curve-denoted by C.
§2. The equivalence and the non equivalence domains
Naturally, a question arises: The original and the associated equations, are they equivalent? C_{0} and C, do they coincide each with another?

It is noted that, the transformation $\left(f_{0}, g_{0}\right) \rightarrow(f, g)$ has matrix:

$$
\{\tau\}=\left\{\begin{array}{cc}
\left(S_{12}-M \cos \theta\right) & \left(C_{12}+M \sin \theta\right) \tag{2.1}\\
\left(C_{12}-M \sin \theta\right) & -\left(S_{12}+M \cos \theta\right)
\end{array}\right\}
$$

Although, in general, the matrix of transformation depends on ω, a and also on θ, its determinant T depends only on ω, a :

$$
T=\left|\begin{array}{cc}
\left(S_{12}-M \cos \theta\right) & \left(C_{12}+M \sin \theta\right) \tag{2.2}\\
\left(C_{12}-M \sin \theta\right. & -\left(C_{12}+M \cos \theta\right)
\end{array}\right|=M^{2}-\left(S_{12}^{2}+C_{12}^{2}\right)
$$

Thus, in the (semi upper) plane $R(\omega, a>0)$, it is necessary to distinguish two domains: the equivalence domain and the non equivalence one.

The equivalence domain satisfies the inequality:

$$
\begin{equation*}
T=M^{2}-\left(S_{12}^{2}+C_{12}^{2}\right) \neq 0 \tag{2.3}
\end{equation*}
$$

Evidently, in this domain, original and associated equations are equivalent and, consequently, corresponding parts of the original resonance curve C_{0} and of the associated one C coincide. It means that, together with the associated resonance curve C (in the equivalence domain) we simultaneously obtain the original-the "true"-resonance curve C_{0} (in the same domain).

The non equivalence line (domain) is determined by the equality:

$$
\begin{equation*}
T=M^{2}-\left(S_{12}^{2}+C_{12}^{2}\right)=0 \tag{2.4}
\end{equation*}
$$

In the non equivalence line, the original and the associated equations are not equivalent, C_{0} differs from C. However, from (1.9) we see that (a, θ) satisfy the original equations $\left(f_{0}, g_{0}\right)$. They also satisfy the associated ones (f, g). This means that $C_{0} \subset C$, the elements of the "original"-the "true"-resonance curve C_{0} (in the non equivalence domain) must be and may be found among those of the associated resonance curve C. In other words, C contains "strange" "superfluous" "extraneous" elements-those belonging to C but not to C_{0}.

§3. The associated resonance curve C

We apply the procedure presented in [1] to examine the associated equations (1.10), trying to identify the associated resonance curve C.

Choosing $P_{0}, Q_{0}, P_{1}, Q_{1}, S_{12}, C_{12}, M$ as "basic" coefficients, we can express other coefficients as:

$$
\begin{align*}
& S_{01}=S_{12}+Q_{1} ; \quad C_{01}=C_{12}+P=1 ; \quad R_{01}=C_{12}-P_{1} ; \quad K_{01}=Q_{1}-S_{12} \\
& S_{11}=M-Q_{0} ; \quad K_{11}=M+Q_{0} ; \quad C_{11}=R_{11}=P_{0} \tag{3.1}
\end{align*}
$$

Then, inserting T, we have:

$$
\begin{aligned}
A & =S_{12} S_{01}+C_{12} R_{01}-M S_{11}= \\
& =S_{12}\left(S_{12}+Q_{1}\right)+C_{12}\left(C_{12}-P_{1}\right)-M\left(M-Q_{0}\right)= \\
& =\left(S_{12} Q_{1}-C_{12} P_{1}+M Q_{0}\right)-\left(M^{2}-S_{12}^{2}-C_{12}^{2}\right)=X-T \\
H & =C_{12} C_{01}-S_{12} K_{01}-M K_{11}= \\
& =C_{12}\left(C_{12}+P_{1}\right)-S_{12}\left(Q_{1}-S_{12}\right)-M\left(M+Q_{0}\right)= \\
& =-\left(S_{12} Q_{1}-C_{12} P_{1}+M Q_{0}\right)-\left(M^{2}-S_{12}^{2}-C_{12}^{2}\right)=-(X+T)
\end{aligned}
$$

$$
\begin{align*}
B & =S_{12} C_{01}+C_{12} K_{01}-M C_{11}= \\
& =S_{12}\left(C_{12}+P_{1}\right)+C_{12}\left(Q_{1}-S_{12}\right)-M P_{0}= \\
& =S_{12} P_{1}+C_{12} Q_{1}-M P_{0}=G, \tag{3.2}\\
G & =C_{12} S_{01}-S_{12} R_{01}-M R_{11}= \\
& =C_{12}\left(S_{12}+Q_{1}\right)-S_{123}\left(C_{12}-P_{1}\right)-M P_{0}=B, \\
E & =M P_{1}-S_{12} P_{0}-C_{12} Q_{0}, \\
K & =M Q_{1}-C_{12} P_{0}+S_{12} Q_{0}, \\
T & =M^{2}-\left(S_{12}^{2}+C_{12}^{2}\right), \\
X & =S_{12} Q_{1}-C_{12} P_{1}+M Q_{0} .
\end{align*}
$$

Three characteristic determinants of the associated equations can be written on the basis of (3.2):

$$
\begin{align*}
D & =\left|\begin{array}{ll}
A & B \\
G & H
\end{array}\right|=\left|\begin{array}{cc}
(X+T) & B \\
B & -(X+T)
\end{array}\right|=T_{1}^{2}-\left(X^{2}+B^{2}\right), \\
D_{1} & =\left|\begin{array}{ll}
E & B \\
K & H
\end{array}\right|=\left|\begin{array}{cc}
E & B \\
K & -(X+T)
\end{array}\right|=-\{E T+(E X+B K)\}, \tag{3.3}\\
D_{2} & =\left|\begin{array}{ll}
A & E \\
G & K
\end{array}\right|=\left|\begin{array}{cc}
(X-T) & E \\
B & K
\end{array}\right|=-K T+(K X-E B) .
\end{align*}
$$

The associated frequency-amplitude relationship is:

$$
\begin{align*}
W(\omega, a)= & D_{1}^{2}+D_{2}^{2}-D^{2}= \\
= & \{E T+(E X+B K)\}^{2}+\{-K T+(K X-E B)\}^{2} \\
& -\left\{T^{2}-\left(X^{2}+B^{2}\right)\right\}^{2}=0 \tag{3.4}
\end{align*}
$$

An important property: the function $W(\omega, a)$ admit T as a factor. Indeed, along $T=0$, we have:

$$
\begin{align*}
\left.W(\omega, a)\right|_{T=0} & =\left\{(E X+B K)^{2}+(K X-E B)^{2}-\left(X^{2}+B^{2}\right)^{2}\right\}_{T=0}= \\
& =\left\{\left(E^{2}+K^{2}-X^{2}-B^{2}\right)\left(X^{2}+B^{2}\right)\right\}_{T=0} \tag{3.5}
\end{align*}
$$

Using the expressions E, K, X, B in (3.2), we successively obtain:

$$
\begin{align*}
E^{2}+K^{2}= & M^{2}\left(P_{1}^{2}+Q_{1}^{2}\right)+\left(S_{12}^{2}+C_{12}^{2}\right)\left(P_{0}^{2}+Q_{0}^{2}\right) \\
& -2 M\left(S_{12} P_{0} P_{1}+C_{12} P_{0} Q_{1}+C_{12} P_{1} Q_{0}-S_{12} Q_{1} Q_{0}\right) \tag{3.6}\\
X^{2}+B^{2}= & M^{2}\left(P_{0}^{2}+Q_{0}^{2}\right)+\left(S_{12}^{2}+C_{12}^{2}\right)\left(P_{1}^{2}+Q_{1}^{2}\right) \\
& -2 M\left(S_{12} P_{0} P_{1}+C_{12} P_{0} Q_{1}+C_{12} P_{1} Q_{0}-S_{12} Q_{1} Q_{1}\right)
\end{align*}
$$

$$
\begin{aligned}
E_{.}^{2}+K^{2}-X^{2}-B^{2} & =\left(M^{2}-S_{12}^{2}-C_{12}^{2}\right)\left(P_{1}^{2}+Q_{1}^{2}-P_{0}^{2}-Q_{0}^{1}\right)= \\
& =T\left(P_{1}^{2}+Q_{1}^{2}-P_{0}^{2}-Q_{0}^{2}\right)
\end{aligned}
$$

Therefore:

$$
\begin{equation*}
\left.W(\omega, a)\right|_{T=0}=\left\{T\left(P_{1}^{2}+Q_{1}^{2}-P_{0}^{2}-Q_{0}^{2}\right)\left(X^{2}+B^{2}\right)\right\}=0 \tag{3.7}
\end{equation*}
$$

Thus, the associated frequency-amplitude relationship can be written as:

$$
\begin{equation*}
W(\omega, a)=T \cdot W_{0}(\omega, a)=0 \tag{3.8}
\end{equation*}
$$

where:

$$
\begin{align*}
& W_{0}(\omega, a)=-T^{3}+\left\{2\left(X^{2}+B^{2}\right)+E^{2}+K^{2}\right\} T+ \tag{3.9}\\
& +\left\{2 E(E X+B K)+2 K(E B-K X)+\left(P_{1}^{2}+Q_{1}^{2}-P_{0}^{2}-Q_{0}^{2}\right)\left(X^{2}+B^{2}\right)\right\}
\end{align*}
$$

In other words, the non equivalence line $T=0$ is a branch of the curve $W(\omega, a)=0$

Is $T=0$ a branch of the associated resonance curve C and if it is, does it belong to the ordinary part C_{1} or to the critical part C_{2} ?

We know that the resonance curve is defined as the locus of those points (ω, a), at each one, the equations of stationary oscillations (which become trigonometrical since ω, a already fixed) are solvable.

From the results obtained in [1], for an arbitrary point $I(\omega, a)$ of the curve (3.4): $W(\omega, a)=0$, the given definition can be translated as follows:

- If $D(\omega, a) \neq 0, I$ "automatically" belongs to C,
- If $D(\omega, a)=0$ and $\operatorname{rank}\{D\}=1, I$ belongs to C_{2} on the condition that the trigonometrical restrictions ($A^{2}+B^{2} \geq E^{2}, G^{2}+H^{2} \geq K^{2}$) are satisfied,
- If $D(\omega, a)=0$ and $\operatorname{rank}\{D\}=0, I$ belongs to C_{2} on the condition that $E=0, K=0$; in this case, the dephase is arbitrary.

Let us calculate the determinant D along $T=0$. We have

$$
\begin{equation*}
\left.D\right|_{T=0}=-\left(X^{2}+B^{2}\right)=0 . \tag{3.10}
\end{equation*}
$$

Thus, in practice, the "whole" non equivalence line $T=0$ or most of its points (at which $D<0$) belong to C_{1}. It remains to examine some particular points satisfying $T=0, X=0, B=0$. Form (3.2), it follows $A=B=G=H=0$ and then, $\operatorname{rank}\{D\}=0$. For last two coefficients E, K we note that:

- If $M=0$, from $T=M^{2}-\left(S_{12}^{2}+C_{12}^{2}\right)=0$, it follows $S_{12}=C_{12}=0$ and $E=0, K=0$ are evident
- If $M \neq 0$, from $X=0, B=0$, it follows:

$$
\begin{equation*}
Q_{0}=\frac{1}{M}\left(C_{12} P_{1}-S_{12} Q_{1}\right), \quad P_{0}=\frac{1}{M}\left(C_{12} Q_{1}+S_{12} P_{1}\right) \tag{3.11}
\end{equation*}
$$

Substituting (3.11) into the expressions of E, K we obtain $E=K=0$. Now, we can conclude that the non equivalence line forms a branch of the associated resonance curve C. Often, it belongs to the ordinary part C_{1}; in particular case, it may contain some critical points.

§4. Example

As an illustration, we consider a system of Van der Pol type [2, 3]:

$$
\begin{equation*}
\bar{x}+\omega^{2} x=\varepsilon\left\{\omega \Delta x+\left[1-(x+q \cos \omega t)^{2}\right] \dot{x}\right. \tag{4.1}
\end{equation*}
$$

(all the notations have been explained in [3]).
The original equations are:

$$
\left\{\begin{array}{l}
f_{0}=\left(\frac{1}{4} a^{2}+\frac{1}{2} q^{2}-1\right)+\frac{1}{2} q a \cos \theta-\frac{1}{4} q^{2} \cos 2 \theta=0, \tag{4.2}\\
g_{0}=\Delta+\frac{1}{2} q a \sin \theta+\frac{1}{4} q^{2} \sin 2 \theta=0
\end{array}\right.
$$

(light differences on the order of the equations and the signs of the second harmonics in comparison with (1.2)).

The matrix of transformation is:

$$
\{\tau\}=\left\{\begin{array}{cc}
2 a+q \cos \theta & q \sin \theta \tag{4.3}\\
-q \sin \theta & 2 a-q \cos \theta
\end{array}\right\}
$$

and the associated equations are:

$$
\left\{\begin{align*}
f & =2 a\left(\frac{1}{4} a^{2}+\frac{1}{2} q^{2}-1\right)-q \Delta \sin \theta+q\left(\frac{5}{4} a^{2}+\frac{1}{4} q^{2}-1\right) \cos \theta=0 \tag{4.4}\\
g & =2 a \delta+q\left(\frac{3}{4} a^{2}-\frac{3}{4} q^{2}+1\right) \sin \theta-q \Delta \cos \theta=0
\end{align*}\right.
$$

The non equivalence line is:

$$
\begin{equation*}
T=4 a^{2}-q^{2}=0 \quad \text { i.e. } \quad a^{2}=a_{0}^{2}=\frac{q^{2}}{4} \tag{4.5}
\end{equation*}
$$

Inserting T in the expressions of the coefficients of the associated equations, we have:

$$
\begin{align*}
& A=-q \Delta ; \quad H=-q \Delta ; \quad K=-2 a \Delta \\
& B=q\left(\frac{5}{4} a^{2}+\frac{1}{4} q^{2}-1\right)=\frac{9}{16}(5 T+X) \\
& G=q\left(\frac{3}{4} a^{2}-\frac{3}{4} q^{2}+1\right)=\frac{9}{16}(3 T-X) \tag{4.6}\\
& E=-2 a\left(\frac{1}{4} a^{2}+\frac{1}{2} q^{2}-1\right)=-\frac{2 a}{6}(T+X) \\
& X=9 q^{2}-16
\end{align*}
$$

Three characteristic determinants are:

$$
\begin{align*}
& D=\left|\begin{array}{ll}
A & B \\
G & H
\end{array}\right|=q^{2}\left\{\Delta^{2}-\frac{1}{256}(5 T+X)(3 T-X)\right\} \\
& D_{1}=\left|\begin{array}{ll}
E & B \\
K & H
\end{array}\right|=\frac{2 q a \Delta}{16}(6 T+2 X) \tag{4.7}\\
& D_{2}=\left|\begin{array}{ll}
A & E \\
G & K
\end{array}\right|=2 a q\left\{\Delta^{2}+\frac{1}{256}(T+X)(3 T-X)\right\}
\end{align*}
$$

The frequency-amplitude relationship is:

$$
\begin{align*}
\left.W\left(\Delta, a^{2}\right)\right|_{T=0}= & D_{1}^{2}+D_{2}^{2}-D^{2}= \\
= & \frac{4 a^{2} q^{2} \Delta^{2}}{256}(6 T+2 X)^{2}+4 a^{2} q^{2}\left\{\Delta^{2}+\frac{1}{256}(T+X)(3 T-X)\right\}^{2}- \\
& -q^{4}\left\{\Delta^{2}-\frac{1}{256}(5 T+X)(3 T-X)\right\}^{2}=0 . \tag{4.8}
\end{align*}
$$

Along the non equivalence line $T=0$ we have:

$$
\begin{align*}
\left.W\left(\Delta, a^{2}\right)\right|_{T=0} & =\left\{\frac{16 a^{2} q^{2} \Delta^{2}}{256} X^{2}+4 a^{2} q^{2}\left(\Delta^{2}-\frac{X^{2}}{256}\right)^{2}-q^{4}\left(\Delta^{2}+\frac{X^{2}}{256}\right)^{2}\right\}_{T=0}= \\
& =\left\{\left(4 a^{2}-q^{2}\right)\left(q^{2} \Delta^{4}+\frac{2 \Delta^{2} X^{2}}{256}+\frac{q^{2} X^{4}}{256}\right)\right\}_{T=0}=0 \tag{4.9}\\
\left.D\left(\Delta, a^{2}\right)\right|_{T=0} & =q^{2}\left(\Delta^{2}+\frac{X^{2}}{256}\right)_{T=0} \geq 0 \tag{4.10}
\end{align*}
$$

Therefore:

- If $X \neq 0$ i.e. $q^{2} \neq \frac{16}{9}$, the non-equivalence line $T=0$ is an ordinary branch of the associated resonance curve C.
- If $X=0$, i.e. $q^{2}=\frac{16}{9}$, the non-equivalence line $T=0$ is also an ordinary branch of the associated resonance curve C except the point $I\left(\Delta=0, a^{2}=a_{0}^{2}\right)$.

Conclusion

The method of elimination of the dephase θ in the equations containing $\sin 2 \theta$, $\cos 2 \theta$ has been presented. The original equations can be transformed into the associated ones, which contain only and linearly $\sin \theta, \cos \theta$. The two systems of equations are not equivalent in the non-equivalence line. The latter is a particular branch of the associated resonance curve.

This publication is completed with the financial support by the Council for Natural Sciences of Vietnam.

REFERENCES

1. Nguyen Van Dinh. Stationary oscillations in degenerated cases. Jounal of Mechanics, NCNST of Vietnam, T.XVIII, No. 2, 1996, (13-19)
2. Mitropolski Yu. A., Nguyen Van Dao. Applied asymptotic methods in nonlinear oscillations, Kluwer Academic Publisher, 1997.
3. Nguyen Van Dinh - Tran Kim Chi. Fundamental resonance in a generalized Van der Pol system. Journal of Mechanics, NCNST of Vietnam T.XVIII, No. 3, 1996, (8-18)

Received September 15, 1998

Hệ LIÊN HỢP VÀ ĐƯỜNG CộNG HƯƠNG CỦA NÓ
Vấn đề khử pha θ trong các phương trình dao động dừng được quan tâm. Trường hợp các phương trình chứa các ác mônic thứ hai $\sin 2 \theta, \cos 2 \theta$ được xem xét. Đã cho thấy các phương trình gốc có thể biến đổi thành các phương trình liên hợp chỉ chứa ở bậc nhất các ác mônic $\sin \theta, \cos \theta$. Các phương trình gốc và liên hợp không tương đương nên đường không tương đương; đường này là một nhánh của đường cộng hưởng của hệ liên hợp.

