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ASSOCIATED EQUATIONS. AN D THEIR 
CORR ESPONDING RESONANCE CURVE 

NGUYEN VAN DINH 

Institute of Mechanics 

In the theory of nonlinear oscillations, in order to identify the. resonance curve 
we usually try to eliminate the dephase fJ in the equations of stationary oscillations.' 
We obt ain thus a certain frequency-amplitude relationship. 

In simple cases when the ment.ioned equat ions contain only and linearly the 
first harmonics (sin 8, cos 8) the elimination of 8 is elementary, by using the trigono­
metrical identity sin2 8 + cos2 8 = 1. 

In general, high harmonics (sin 28, cos 28, etc.) are present. Consequently 
the expressions of sin 8, cos 8 are cumbersome or do not exist and the analytical 
elimination of 8 is quite inconvenient or impossible. For this reason, to identify' 
the resonance curve of complicated systems, we use the numerical method. 

Below, intending to develop the analytical method, we shall propose a proce­
dure enabling us to transform the "original" complicated equations of stationary 
oscillations into the so-called associated ones, only and linearly containing sin 81 

cos 8. The equivalence of the original and associated equations will be treated an<{ 
the associated resonance 'curve-that is determined by the associated equat ions-will 
be analyzed 

. -
The discussion will be restricted to a simple practical case in which, beside 

sin 8 and cos 8, only sin 28 and cos 28 are present. Nevertheless, the method pro­
posed and the results o~tained can be generalized. 

§1. System under consideration. The elimination of 28 

Let 

a= c/0 (w,a,8) = c{ Po + 801 sinO + Co1 cosfJ + Msin26 }, 

aiJ = cg0 (w , a, 0) = c{ Q0 + R01 sin fJ + Ko1 cos fJ + M cos 26 }, 
(1.1) 

be the averaged differential equations governing the oscillating system of interest, 
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where: a, 0 are amplitude and dephase angle, respectively; w is the frequency; 
overdots denote the derivation relative to time ~i e > 0 is a small formal parameter; 
Po, Qo, So, Cot, Rob Kot are polynomials in w, a. 

Constant amplitude and dephase of stationary oscillations satisfy the equa-
tions: 

fo =Po+ Sot sinO+ Col cos 0 + M sin28 = 0, 

Uo = Qo + Qol sin fJ + Ko1 cos fJ + M cos 20 = 0. 
(1.2) 

The equations (1.2) will be called "original" ones. They determine the "true" 
"original" resonance curve-denoted by C 0 • 

We use the following two step procedure to eliminate (sin2fJ,cos2fJ): First, 
we form the equations, equivalent to (1.2) and of the same structure as {1.2} 

where: 

It= focosfJ- uosinfJ = 
··P1 + Su sinO+ Cu cos 0 + S12 sin20 + C12 cos 20 = 0, 

91 = /osinO + go cosO= 

= Q1 + Ru sinO + Ku ccsO + R12sin20 + K12 cos20 = 0, 

1 
P1 = 2(Co1 ~ Rot); SuM- Qo; Cu =Po, 

1 
S12 = 2(So1- Kot) i 

1 
C12 = - Col + R ot), 

2 
1 . 

Qt = ~ (Sol+ Kol)i Ru =Po; Ku = M + Qo; 2 . 
1 1 " 

· R12 = . Z(Co1 +Rot); K12 = Z(Ko1 - Sot)· 

Then, we choose suitable combinations of the form: 

I = P10/o + q10go + Puh + qugl = 0, - . 

g = P2ofo + q2oYo + P2th + q219t = 0. 

Evidently, f does not contain sin 20, cos 20 if: 

M · Pto + St2 · Pu + Rt2 · qu = 0, 

M · qlO + C 12 · Pu + K t2 · qu = 0. 

We can choose, for instance: 

Pto = S12i Pu = -M; qlo = C12i qu = 0. 
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Similarly, g does not contain sin 20, cos 20 if we choose: 

(1.8) 

_Finally, we obtain the following equations, which do not contain sin 20, cos 20: 

or: 

where: 

f = 81~/o + C12Yo- Mft = 

= (812 - M cos O)fo + (C12 + ~ sinO)g0 = 0, 

g = C12/o- 812Yo- Mgt = 

= (C12- M _sin20)fo- (8u + M cos20)g0 = 0. 

F= AsinO + BcosO- E = 0, 

g = G sin 0 + H cos 0- K = 0. 

. 
A = 8ti.8ot + C12Ro1 - M8u ; B = 812Co1 + Ct2Kot - MCu , 

(LQ) 

(1.10) 

E = MP1- 812Po- C12Qo ; K = MQ 1 - C12Po + 812Qo , (1.11) 
- . 

G = C128ot- 8 12Ro1 - MRu ; H = C12Co1- 812Ko1 - MKu . 

The equations (1.10) will be called associated ones. They determine the so-called 
"associated" resonance curve-denoted by C . 

§2. The equivalence and the non equivalence domains 

Naturally, a question arises: The original and the associated equations, are 
t hey equivalent? Co and C , do they coincide each with another? 

It is noted that , the transformation (/0 , g0 ) ~(!,g) has matrix: 

{T} = { (S12 - McosO) 
(C12 - M sinO) 

(C12 + MsinO) } 
- (812 + M cos 0) 

(2.1) 

Although, in general, the matrix of transformation depends on w, a and also on 
0, its determinant T depends only on w, a: 

T =I (S12 - M cosO) 
(C12- MsinO 

(Cl2 + M sinO) I = M2 - (82 + c2 ) 
- (C12 + M cos 0) 12 12 (2.2) 

Thus, in the (semi upper) plane R(w, a> 0), it is necessary to_ distinguish two 
domains: the equival~nce domain and the non equivalence one. 
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The equivalence domain satisfies the inequality: 

. 2 ( 2 2) . . T = M - 8 12 + C12 f:. 0. (2.3) 

Evidently, in this domain, original and associated equations are equivalent arid, 
consequently, corresponding parts of the original resonance curve Co and of the 
associated one C coincide. It means that, together with the associated resonance 
curve C (in the equivalence domain) we simultaneously obtain the original-the 
"~rue" -resonance curve Co (in the same domain). 

The non equivalence line (domain) is determined by the equality: 

(2.4) 

In the non equivalence line, the original and the associated equations are not 
equivalent, G0 differs from C. However, from (1.9) we see that (a, 0) satisfy the 
original equations (/0 , g0 ). They also ~atisfy the associated ones (!,g). This 
means that Co c C, the elements of the "origina.l"-the "true"-resonance curve C0 

(in the non equivalence domain) must be and may be found among those of the 
associated resonance curve C. In other words, C contains "strange" "superfluous" 
."extraneous" elements-those belonging to C but not to C0 • 

§3. The associated resonance curve C 

We apply the procedure presented in [I] to examine the associated equations 
(1.10), trying to identify the associated resonance curve C . 

Choosing Po, Qo, P1, Q1, 8 12 , C 12, Mas "basic" coefficients, we can express 
other coefficients as: 

So1 = 812 + Q1; 

8u...:..... M- Qoi 

Co1 = C12 + P = 1; Ro1 = C12- P1; 

Ku = M + Qo; Cu = Ru = Po. 

Ko1 = Q1 - 812, 

Then, inserting T, we have: 

A = 812801 + C12Ro1 - M811 = 
= 812(812 + QI) + C12(C12 - PI)- M(M- Qo) = 
= (812Q1 .:___ C12P1 + MQo) - (M2 - 8l2 - c;2) =X- T, 

H = C12Co1- 812Ko1- MKu = 

= C12(C12 +PI) - 812(Q1 - 812)- M(M + Qo) = 

= - (812Q1 - C12P1 + MQo) - (M2 - 8i2 - Ci2 ) = - (X + T), 
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B = S12Co1 + C12Ko.1 - MCu = 

= S12(C12 + P.) + C12(Q1 - S12)- MPo = 
= S12Pt + C12Q1 - M Po = G, 

G = C12Sot - S12Rot - M Ru = 

. = Ct2(Sl2 + Q.)- St2a(Cl2- PI)- MP0 = B, 

E = ll.f Pt - S12Po- C12Qo, 

K = MQ1 - C12Po + S12Qo, 

T = M 2
- (s:2 + c~2), 

X= S12Q1 - C12P1 + MQ'o . 

(3.2) 

Three characteristic determinants of the associated equations can be written 
on the basis of (3.2): 

D = I A . B I = I (X+ T) B I = T2 - (X2 + B2) 
G H . B - (X+ T) 1 ' 

Dt =I; ~I = I; -(:+ T) I=-{ ET +(EX + BK) }, (3.3) 

D, = I~ ~ 1=1 (X _;Tl ~ I = -KT+ (KX - EB). 

The associated frequency-amplitude relationship is: 

W(w, a) = Di + D~ - D2 ~ 

=.{ET+(EX+BK)r +{ - KT + (KX - EB)r 

- { T 2 
- (X2 + B 2

)} 
2 

= o: (3.4) 

An important property: the function W(w , a) admit T as a factor. Indeed, along . 
T = 0, we hci.ve: 

W(w, a) IT=o = {(EX + BK)2 + (KX- EB)2
- (X2 + B 2

)
2

} T=o = 

. . { (E2 + K2 - X2 - B2)(X2 + B2)} T=o. (3.5) 

Using the expressions E, K, X, B in (3.2), we successively obtain: 

E 2
_ + K 2 

= M 2 (Pf + Qi) + (8:2 + c:2)(PJ + Q~) 
- 2M(St2PoPt + C12PoQ1 + C12P1 Qo- S12Q1 Qo), 

X 2 + B 2 = M 2 (PJ + Q~) + (Sr2 + Cr2)(Pf + Qn 
- 2M(St2PoPt + C 12PoQ1 + Ct2PtQo 7 St2Q}QI), 
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E.2 + K 2 - X 2
- B 2 = (M2

- Sl2- Cl2HPl + Q~ - P~ - QA) = 

= T(P~ + Q~- P~- Q~). 

Therefore: 

W(w,a) lr=o = { T(Pf + Q~ - P~- Q~)(X2 + B 2
)} = 0. {3.7) 

T~us, the associated frequency-amplitude relationship can be written as: · 

W(w, a) = T · W0 (w, a) = 0, {3.8) 

where: 

W0 (w, a) = - T 3 + { 2(X2 + B 2
) + E 2 + K 2 }T+ (3.9) 

+ { 2E(EX+ BK) + 2K(EB- KX) + (Pf + Q~- P~- Q~)(X2 + B 2
) }. 

In other words, the non equivalence line T = 0 is a branch of the curve 
W(w,a) = 0 

Is T = 0 a branch of the associated resonance curve C and if it is, does it 
belong to the ordinary part cl or to the critical part c2? 

We know that the resonance curve is defined as the locus of those points (w, a) , 
at each one, the equations of stationary oscillations (which become trigonometrical 
since w, a already fixed) are solvable. 

From the results obtained in [1], for an arbitrary point I(w,a) of the curve 
(3.4): W(w, a) = 0, the given definition can be translated as follows: 

-If D(w, a) =I 0, I "automatically" belongs to C, 

- If D(w, a) = 0 and rank{ D} = 1, I belongs to C2 on the condition that the 
trigonometrical restrictions (A 2 + B 2 ~ E 2 , G2 + H 2 ~ K 2 ) are satisfied, 

- If D( w, a) = 0 and rank{ D} = 0, I belongs to C 2 on the condition that 
E = 0, K = 0; in this case, the dephase is arbitrary. 

Let us calculate the determinant D along T = 0. We have 

(3.10) 

Thus, in practice, the "whole" non equivalence line T 0 or most of its 
points (at which D < 0) belong to C 1 • It remains to ~xamine some particular 
points satisfying T = 0, X = 0, B = 0. Form (3.2), it follows A = B = G = H = 0 
and then, rank{ D} = 0. For last two coefficients E, K we note that: 
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- If M = o,-from T = M 2 ·- {Sf2 + Cl2) = O, it follows Su = Cu = 0 a~d 
E = 0, K = 0 are evident 

- If M -=/: 0, from X = 0, B = 0, it follows: 

(3.11) 

Substituting (3.11) into the expressions of E, K we obtain E = K = 0. Now, 
we can conclude that the non equivalence line forms a branch of the associated 
resonance curve C. Often, it belongs to the ordinary part C 1 ; in particular casie, 
it may contain some critical points. 

§4. Example 

As an illustration, we consider a system of ~an der Pol type [2, 3] : 

x + w2 x = e:{ w.6.x + [ 1- (x + qcos wt) 2
] .i 

(all the notations have been explained in [3]). 

The original equations are: 

{ 

fo 

9o 

(
1 1 ) 1 1 . = -a2 + - q2

- 1 + -qacos ()- -q2 cos 26 = 0 , 
4 2 2 4 

= .6. + !qasin6 + !q2 sin26 = 0 
2 4 . 

(4.1) 

-. (4.2) 

(light differences on the order of the equations and the signs of the second har­
monics in comparison with (1.2)}. 

The matrix of transformation is: 

{ T } = { 2a + q. cos () 
- qsm6 

and the associated equations are: 

· qsin6 } · 
2a - qcos () 

= 2a(!.a2 + !.q2 - 1) - qtlsin() + q(~a2 + !.q2
- 1) cosO = 0, 

4 2 4 4 . 

I (3 2 3 2 ) ' () = 2ao + q 4a - 4q + 1 smO - qtlcos = 0. 

The non equivalence line is: 

T 2 2 0 . = 4a - q = 1.e. 
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Inserting T in the expressions of the coeffi.cient!S of the associated equations, 
we have: 

A = - q6; H = - q6; K = -2a6 

(
5 1 ) 9 B = q 4a2 + 4q2- 1 = 16 (5T + X) ; 

. ( 3 3 ) 9 G = q - a 2 
- -q2 + 1 = - (3T - X) 

4 4 16 
(4.6) 

· (1 1 ) 2a E = - 2a 4a 2 + 2"q2
- 1 = - 6(T + X); 

X = 9q2 -16. 

Three characteristic determinants are: 

. D = I ~ ; I= q
2

{ 6
2

- 2~6 (5T + X)(3T - X)}; 

Dl =I; ; I= 2~~Ll (6T + 2X); (4.7) 

D2 =I~ :I= 2aq{ Ll
2 + 2!6 (T + X)(3T - X)}. 

The frequency-amplitude relationship is: 

Along the non equivalence line T = 0 we have: 

Therefore: 

- H X f. 0 i.e. q2 f. 1

9

6
, the non-equivalence line T = 0 is an. ordinary branch 

of the associat ed resonance curve C . 
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- H X = 0, i.e. q2 = 1
:, the non-equivalence line T = 0 is also an ordinary 

branch of the associated resonance curve C except the point I (A ..:.... 0, a 2 = a~) . 

Conclusion 

The method of elimination of the dephase fJ in the equations containing sin 20, 
cos 20 has been presented. The original equations can be transformed into the 
associated ones, which contain only and linearly sin fJ, cos fJ. The two systems of 
equations are not equivalent in the non-equivalence line. The latter is a particule!f 
branch of the associated resonance curve. 

This publication is completed with the financial support by the Council for ,, -

Nat ural Sciences of Vietnam. · 
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H:~ LIEN HQ"P vA DUONG CQNG HUONG cOA N6 

Van de khli- pha (J tro~g cac phU'O'Ilg trlnh dao d<}ng dlr:n.g dtr<;rc quan t am. 
Trrremg h<;rp cac phmmg trinh chua cac ac monic thtl- hai sin 20, cos 20 dtr<;rc xem 
xet. Da cho tha:y cac phmmg trinh g6c c6 th~ bic1n d5i thanh cac phmmg trin¥ 
lien hgp chl chua & b¥ nhat cac ac monic sinO, cos fJ. Cac phmmg trinh goc vft 
lien h<;rp khong tmmg dmmg nen dmrng khong tll"O'ng dmmg; duimg nay la mc?t 
nhanh cda dtremg c()ng htrang cua h~ lien h<;TP. 
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