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IDENTIFYING THE RESONANCE CURVE OF
A SYSTEM SUBJECTED TO LINEAR AND
QUADRATIC PARAMETRIC EXCITATIONS

(case with damping)

NGUYEN VAN DINH - TRAN KIM CHI
Institute of Mechanics

In [3], a quasi linear oscillating system simultaneously subjected to linear and
cubic parametric excitations has been studied. In the present paper, we examine
the case in which the linear and quadratic parametric excitations are present.

The asymptotic method [1] is applied. We are interested in the method of
identifying the resonance curve. The results obtained show that the “associated”
equations can be used.

§1. System under consideration - Original and Associated equations

Let us consider a quasilinear oscillating system described by the differential -
equation: ‘

i+wir= E{Az — hi — 422 + 2pz cos 2wt + 2qz® cos wt} (1.1).

where 2p > 0, 2¢ > 0 and 2w, w are intensities and frequencies of the linear and
the quadratic parametric excitations; other notations have been explained in [2|.

Introducing slowly varying amplitude @ and dephase § by means of formulas
z=acosyY, Z=—wasiny, Y=wt+0 . (1.2)

and applying the asymptotic method [1], the following averaged differential equa-
tions will be obtained:

= - 1
a= Eafo A {hw+psin20+ —qasino},
A - 3 3 b
al = 23190 = ;wa{(A - T’yaz) + pcos 20 + Eqacos 0} E
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Stationary oscillations - their constant amplitude and dephase satisfy the equations

ko
fo = hw + psin26 + —qgasinf =0,
o e . (1.4)
go = (A = T’)’az) + pcos 26 + -z-qacosﬂ =0

High harmonics (sin 26, cos26) and the term hw make difficulty in analytically
solving the system (1.4) and identifying the resonance curve. In order to eliminate
mentioned harmonics, we use the transformation

[ = (2pcos b + ga) fo —2psinfgo = 0, (1.5)
| 9 = 2psinbfy + (2pcos 8 — ga)go =0, ’
or in detail
ey _fax_%1 23 122\ »
F= {Zp[p (A 2 8 )] + 27 @ }sm0+2phwc050+hwqa-—0, \

' ' 3 3

{ g =2phwsinf + {2p[p+ (A - -:;laz)] - quaz} cos 0— (1.6)

' 5 )
{ —qa(A——‘t—a —2p)—0.

The equations (1.4) and (1.6) are called respectively the “original” and the “asso-
ciated” equations; and their corresponding resonance curves are called “original”
and “associated” resonance curves and denoted by Cy and C. The transformation

(fo,90) — (f,g) has matrix

_f2pcos@+gqga  —2psinf ‘
{T}—{ 2psin 0 2pcosf —qa [ (2.7}

* Although {T'} depends on a and 0, its determinant depends only on a:’
| T = 4p® — ¢%a®. (1.8)

In the (semi-upper) plane R(A;a? > 0), it is necessary to distinguish two domains:
the equivalence domain and the non-equivalence one.

The equivalence domain satisfy

2 % 2 . 2 2 4p*
T=4p"—q°a®"#0 ie a" #a,=—- (1.9)
q
Obviously, in the equivalence domain, the original and associated equations are
equivalent; consequently, corresponding parts of Cy and C coincide each with
another.
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The non-equivalence domain is the line

T=0 ie a®=dl (1.10)
Along the non-equivalence line, the equations (fo,90) and (f, g) are not equivalent,
C, differs from C. However, from (1.5), it follows that all solutions of (fo,g0) also
satisfy (f,g). Hence Cy C C, i.e. along the non-equivalence line the elements
(representative point and dephase angle) of the original resonance curve Cy must
be and may be found among those of the associated resonance curve C. In other
words, the non-equivalence line contains “strange” elements; By rejecting them,
we obtain “exactly” Cgy from C.

§2. The associated resonance curve

The associated equations are simple. They contain only and linearly sin#;
cosf. The elimination of 8 is elementary and we can easily obtain the required
frequency-amplitude relationship.

Following the procedure in [2] (which has been used in [3]), we rewritte the
associated equations in the form

f=Asin + Bcosf — E =0,
g =Gsinf + hcosf — K =0,

where: g : i
L3 N ey g L3 D T S
A = 2p[p (A La )] + 54" 2(T+4pX), |
B =G = 2phw; E = —hwqa; K = qaX, (2.2)
- 3, ] 34545 1
H-2p[p+(A 40,) 590 —-2(3T+4pX).v
Three characteristic determinants are:
B | =—{l(T+4pX)(3T+4PX)+4P2h2w2}
G H 4 : *
E B 1Ly : ,
— - .3
Dy K Hl | 2h,wqa(3T+ 8pX), (2.3)
_|A E|_ 1 _ 2 32 2
D, = ¢ K|= 2qa,{TX+4p(X h*w )},

and the associated frequency - amplitude relationship is:
W(A,a®) = Di{ + D; - D* =

= iqzaz {h2w2(3T + 8pX)% + [TX + 4p(X? — h*w?)] 2}

2
= {2(T +4pX)(3T + 4pX) + 4p2-h2w2} =0, (24)
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An important interesting property is that the function W(A,a?) admits T as a
faltor. In fact, we have:

W(A,az)sz'0 =

= {i-qzaz [64ph%w X + 16p°(X? — h?w?)?] — 16p*(X* + hzwz)}:r—o

2 —4p2{(4p2 ~ g?a?)(X? + hzwz)z}Tzo

= —4p2{T(X2 + hzwz)z} =0, (25)

Therefore, the associated fréquency amplitude relationship (2.4) can be factorized
as

W(A,a?) = TWy(A,a?) =0 (2.6)
where
9 9 1
2 g8 _ (%29 & _2)2
Wo(A,a®) 16T (4h w” +6pX + 4X - 3
— (3p%h%w? + 10ph%w?X + 21p° X2 + 2pX3)T
+ [8p® Xh2w? — 24p3 X3 — 4p?(X? + hPw?)?]. (2.7)
This means that the non-equivalence line T = 0 is a branch of the curve W (A, a?) =

0 (which, in general, does not coincide with the associated resonance curve).

The associated resonance curve C can be identified by the associated frequency
amplitude relationship. It consists of two parts: - the ordinary part C; and - the
critical one C,. Let us separately analyze each of these two parts. The ordinary
part C; is located in the ordinary region

L]

It is noted that, along T = 0, the determinant D is negative:

D|,_, = —4p*(X* + h?w?) <0, ; (2.9)

i.e. the non - equivalence line is located in the ordinary region. On the other hand,
since T = O satisfies (2.6), along T = 0, the algebraic solutions u = sin, v = cos @
of the system (2.1) satisfy the trigonometrical identity u? + v% = 1.

Thus, the non-equivalence line T = 0 is an ordinary branch - a branch be-
longing to the ordinary part C; of the associated resonance curve C.

The critical part C3 is located in the critical region:
3 ,
Ry;:D=0i.e. 4—T2 +4pT X + 4p*(X? + h*w?) =0 (2.10)
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and (since the rank of the matrix D is equal to 1) satisfy:

- The compatibility conditions
Dy, =0 ie. 3T +8pX =0, (2.11)
D; =0 ie TX+4p(X? - h%w?) =0. (2.12)
- The trigonometrical conditions

1
A*+ B* > E? ie. Z(T +4pX)? + 4p*h*w? > hPw?¢?d?, (2.13)

1
G?+ H? > K? ie. 4p*h?w? + F 68T + 4pX)? > ¢*a’ X2 (2.14)

If w? is substituted by (A + 1), the equality (2.10) becomes a quadratic equation
of unknown A, admitting as solutions

3% s q*a® B?

A= —— ¥
e 2 5 (2..15)
3
& \/T2 — 16p2h? + [SpTh2 - 16;)2h2(—£—a2 +2p) + 2p2h2]
or approximatively

3. g*a? 1
A= a4+ — + —/T? - 16p2h? . 2.16)
4 a” + 2p rFs P ( J

Thus, the critical region is an “hyperbola”. It consists of two branches respectively
located above and under the non-equivalence line T' = 0, and admits as asymptotic
3 2 a2 T .
two lines A = —La2 F 22 4 - je thelines A=0and H =0.
4 2p 4p
The lower branch, denoted by D’, intersects the abscissa axis at A = *++/p% — h2, -

4ph

reaches its maximum at a? = a? — _p_2 As h increases, D’ moves down then dis-
q

appears when h > p (it passes into the semi - lower plane R(A,a? < 0).

4ph
The upper branch, denoted by D”, has a minimum at a? = a2 + ;;2, moves

up as h increases

We try to determine the compatible ensemble in these two critical branches
by two conditions (2.11), (2.12).

141




From (2.11), it follows:

37 4 3q2a2 p
- — ot R, 2.17
A 1 a’ + 8p + 9 ( )

Substituting (2.17) into (2.12), we obtain a quadratic equation of unknown a
3q¢tat — 24(p?q® + 2vp?h? + ph’¢®)a® + 16(3p* — 4p’h? — 2p%h%) = 0. (2.18)
Approximatively, the two roots of (2.18) are

B 8ph\/3 '
1,2 * 3 qz
Thus, we obtain two compatible points which are intersection points of the line
(2.17) and the hyperbola (2.10).

By I', I" we denote two compatible points. The lower point I' (sign —) -
located in D’ - exists when h is small enough (if h is large, a? < 0). The upper
point I" (sign +) - located in D" - always exists. As h increases, I' moves down
then disappears while I moves up.

2

(2.19)

It remains to verify the two trigonometrical conditions (2.13), (2.14). From
(2.11), (2.12), it follows

3T 3T*?
X=-"—, h%w?=—. (2.20)
8p 64p?
Substituting (2.20) into (2.13), (2.14) leads to
4 16p?
s < Sat = 22 (2.21)

For small h, the two values a} , (see (2.19)) are close to w?, (2.21) is satisfied.
Both I’ and I” are critical (nodal) points. Increasing h, critical points I’ and I”
successively disappears: moving down, I’ always satisfied (2.21). It is thus critical
until it passes into the semi - lower plane (a? < 0); moving up, I” does not satisfy
(2.21) when h is large enough (it becomes an isolated trivial compatibility point).

3 3
Approximatively: - if A < pl/G——, both I’ and I” are critical; - if p% < h<

3
pT ,only I’ is critical; - if A > p—z— , critical points do not exist.
For fixed values v = 0.04, p = 0.01, ¢ = 0.03 the resonance curves in fig. 1, 2,
3 correspond to h = 0.0015, 0.0040, 0.0088 respectively; the broken line represents

the non-equivalence line).

We see that if h is small enough, the resonance curve contains two critical
nodal points (fig.1). As h increases, the upper critical point I” moves up then
disappears first and the resonance curve has only one critical point - the lower I’
(fig.2). If h is large enough, critical points do not exist (fig. 3).
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§3. The original resonance curve

As it has been noted in §1, the non-equivalence line contains strange elements.
We shall demonstrate that for the case examined (system with damping, A > 0),
the non-equivalence line T' = 0 is strange, except its intersection points with the
curve Wy(A,a?) = 0. By I(A.,a?) we denote the point of interest in 7' = 0 and
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8. - its corresponding (associated) dephase. At I, we have

D. = D(A.,d?) = —4p*(X? + h%w?). <0

sinf, = (%)* = (ﬁ%) (3.1)
2. P22
.= (). - o).

(the asterisk indicates that the quantity in question is calculated at I'). By N (A, a?)
" we denote an arbitrary point in the neighbourhood of I, but out off ' = 0. At
N, we have D < 0 (by continuity) and T # 0. We introduce an angle 8 called
artificial dephase defined as

sinf = (3.2)

e ' S S .. B
vDi+ D%’ v D} + D}

Obviously, ‘when N tends to I , the artificial dephase 0 tends to the associated one
0.. At N, since T # 0, from (1.5), we can express (fo,go) as combinations of

(f.9):

fo(A,a,0) = {(2pcos0 ga)f + 2psm0,g} A
(3.3)
go(A,a, 0) = %{ — 2psin8f + (2pcosf + qa)g}.

Using (2.1), (3.2) and regarding that; in the ordinary region (where the non-equiv-
alence line and its neighbourhood are located) three characteristic determinants
D,, D,, D identically satisfy

AD\+BDy=ED, GDy+HD;=KD, (3.4)
we can write (3.3) in the form

( fo(A,a,a) —

__1 aa = T
- — = i ; 2 2
T\/m{(chosﬂ qg)E+2ps1no K}{D+\/D1+D2}
_ {(2pcos 8 — ga)E + 2psind - K}{D}+ D} - D?}

T+/D? + D{D - \/D? + D2} ’

T i, 0) (3.5)

T\/m{ 2psin - E+(2pcos€+qa)K}{D+\/D2+D2}
ks {—2psm0-E+(2pcosﬂ+qa.)K}{Df+D§——D2}
1 T\/D? + D}{D - /D% + D3} '
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Recall that Df + D — D? = W(A,a?) = TWo(A, a?), we obtain

{(2pcosﬂ ga)E + 2psin@ - K}

A3 ’.5 = 2 y
b E IV ) o
so(A,a,8) = { —2psing - E+(2pcosﬂ+qa K} Wo(A, a?).

VDI i DID— D D))

At limit (A — A, a — a., § — 0,) we have

fO(Aaaaa) s fo(A*,a*,ﬂ*), gO(Aaaaa) o gO(A*7a*’0*)’

D - D. = —4p*(X* + h*w?)., /D}+ D} — -D., (3.7)

E — E, = —(hwga). = —2phw,, K — K, =2pX,,
Wo(A,a?) — Wo(A.,a?), qa — qa, = 2p.

Therefore . -
—Nnw,
fo(A*,a*,ﬂ ) 4 2(X2 +h2 2) WO(A*aa )
A (3.8)
go(Ax, ax,0. ) WO(A*, )

4p?(X? + h2w?)?

I(A.,a?) is a representative point of the original resonance curve Cy and 4, is
the “original” dephase if and only if fo(A.,a.,0.) and go(A., a.,0.) simultaneous-
ly vanish. Since hw, # 0, from (3.8), it follows that the required conditions lead to
Wo(A.,a2) = 0ie. I(A.,a?) is an intersection point of the non-equivalence line
T = 0 and the curve Wy(A, ¢?) = 0. Summing up, the original resonance curve is
given by the simplified frequency amplitude

W(A,a?) _

Wo(A,az). = T

0. (3.9)

(on condition that at compatible points (D = Dy = D, = 0) the two trigonomet-
rical conditions must be satisfied)

Conclusion

We have identified the resonance curve of a quasi linear oscillating system
subjected to linear and quadratic parametric excitations. The so-called associated
equations has been used and the original resonance curve is obtained from the
associated one by rejecting the non equivalence line.
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LAP PUONG CONG HUONG CUA HE CHIU
HAI KiCH PONG THONG SO BAC NHAT VA BAC 2
Xét hé dao dong 4 tuyén chiu hai kich dong théng s6 bic nhit va béc hai &
treong hop cé can. Hé phuong trinh lién hop dwoc st dung va két qua cho thiy

dwong cong hudng “géc” dwoc xéc dinh tir dwdng cong hudng lién hop bing cich
loai bé dwdong khong twong dwong.
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