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IDENTIFYING THE RESONANCE CURVE OF 
A SYSTEM SUBJECTED TO LINEAR AND 
QUADRATIC PARAMETRIC EXCITATIONS 

(case with damping) 

NGUYEN VAN ,DINH - TRAN KIM CHI 

Institute of Me~hanics 

In [3], a quasi linear oscillating system simultaneously subjected to linear an;d 
cubic parametric excitations has been studied. In the present paper, we examil}e 
the case in which the linear and quadratic parametric excitations are present . 

The asymptotic method [ 1] is applied. · We are interested in the method of 
identifying the resonance curve. The results obtained show that the . "associated" 
equations can be used. 

§ 1._ System under consideration - Original and Associated equatioi1-s 

Let u~ consider a quasilinear oscillating system described by the differenti~l · 
equation: · 

. x + w2 x = e-{ ~x- h:i;- ryx3 + 2pxcos2wt + 2qx2 coswt} (1.1). 

where 2p > 0, 2q > 0 and 2w, w are intensities and frequencies of the linear ~d 
the quadratic parametric excitations; other notations have been explained in [2). 

Introducing slowly varying amplitude a and dephase fJ by means of formul<j~S . 

x = acost/J, :i; = - wasint/J, t/J = wt + fJ · (1.2) 

and applying the asymptotic method [1], the following averaged different ial equa­
tions will be obtained: 

{ 

a= - E:a fo = - E:a {hw + psin 20 + !qasino}, . 
2w 2w 2 ( ) 

. - e-a -e-a { ( 3ry ) 3 } 1.~ . afJ = - - g0 = -- ~ - -a2 + pcos20 + - qacosfJ . 
2w 2w 4 . 2 
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Stationary oscillations - their constant amplitude and dephase satisfy the equations 

{ 

fo = hw + psin20 + ~qasinO = 0, · 
' 2 

g0 = ( ~- 3
: a2 )_+ pcos 20 + ~qacos 0 = 0. 

(1.4} 

High harmonics (sin 20, cos 20) and the term hw make difficulty in analytically 
solving the system (1.4} and identifying the resonance curve. In order to eliminate 
mentioned harmonics, we use the transformation 

or in detail 

{
I= (2pcos () + qa}lo- 2psin0go = 0, 

g = 2psin010 + (2pcos0- qa}go = 0, 

1 = { 2p [P - ( ~ - 3

4"'~ a2
)] + iq2 a 2

} sin() + 2phw cos() + hwqa = 0, 

(1.5} 

g = 2phw sin 0 + { 2p ~-+ ( ~- ·
3
: a 2

)] - iq2a 2
} cos 0- . {1.6} 

- qa(~- 3

4"'~ a2
- 2p) = 0. 

The equations (1.4} and (1.6} are called respectively the "original" and the "asso­
ciated" equations; and their corresponding resonance curves are called "original" 
and "associated" resonance curves and denoted by C0 and C. · The transformation 
(/o,9o} ~(!,g) has matrix 

{i} · .. :·{· 2pcos ~ + qa -:-2psin 0 ·} 
2psm 0 2pcos 0- qa · 

.. · Although {T} deperids on -a and 0, its determinant depends only on a:· 

T = 4p2- q2a2. 

(1.7} 

(1.8} 

In the (semi-upper) plane R(~;a2 > 0}, it is necessary to distinguish two domains: 
the equivalence domain and the non-equivalence one. 

The equivalence domain satisfy 

T = 4p2
- q2 a 2 f. 0 i,e. a 2 f. a 2 = 

4
P

2 

• 
* q2 (1.9} 

Obviously, in the equivalence domain, the original and associated equations are 
equivalent; consequently, corresponding parts of Co and C coincide each with 
another. 
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The non-equivalence domain is the line 

T 0 . 2 2 = I.e. a =a •. (1.10) 

Alon~ the non-equivalence line, the equa~ions (10 , g0 ) and(!, g) .are not equivalen~, 
C0 differs from C. However, from (1.5), It follows that all ·solutions of (/0 , g0 ) al~o 

satisfy (/,g). Hence Co C C, i.e. along the non-equivalence line the elemen~s 
(representative point and dephase angle) of the original resonance curve C0 must 

be and may be found among those of the associated resonance curve C. In oth~r 
words, the non~equivalence line contains "strange" elements; By rejecting the~, 
weobtain "exactly" C0 from C. 

§2. The associated resonance curve 

The associated equations are simple. They contain only and linearly sin.~; 
cos 0. The elimination of 0 is elementary and we can easily obtain the require~ 

·frequency-amplitude relationship. 

Following the procedure in [2] (which has been used in [3]), we rewritte t~e 
associated equations in the form 

{ 
I = A sin 0 + B cos 0 - E = o, 

(2.l) 
g = G sin 0 + hcos 0 - K = 0, I ,.-

where: 

A = 2p[p - (~ - 3
4
'Ya

2
)] +~q2a2 =-~(T+4pX), 

B = G = 2phw; E = - hwqa; K = qaX, 

H = 2p[p + ( ~ - 3
4
'Y a

2
)] - ~q2a2 = ~(3T + 4pX). 

Three characteristic determinants are: 

D = I~ ! I= -{~(T + 4pX)(3T + 4pX) + 4p
2
h

2
w

2 
}, 

I

E Bl 1 · . Dt = K H . - 2hwqa(3T + 8pX), 

D2 = I~ ; I = - ~qa{ TX + 4p(X2
- h2

w
2

) }, 

and the associated frequency - amplitude relationship is: 

W(~,a2 ) = D~ + D~ - D 2 = 

= ~q2a2 { h 2 w2 (3T + 8pX)2 + [TX + 4p(X2
- h2w~)) 2 } 

= { ~ (T + 4pX)(3T + 4pX) + 4p2h2w2 r = 0. 

139 

(2.~) 

(2.4) 



An important interesting property is that the function W(A, a 2
) admits T as a 

fat tor. In fact, we have: . 

W(A,a2)jT=O = 
= { !q2a2 [64p2h2w2 X2 + 16p2(X2- h2w2)2) - 16p4(X2 + h2w2)} 

4 T = O 

= -4p2{ (4p2- q2a2)(X2 + h2w2)2} T=O 

== -4p2 {r(x2 + h2w2)2} = o. (2.5) 
T =O 

Therefore, the associated frequency amplitude relationship (2.4) can be factorized 
as 

(2.6) 

where 

2 9 a ( 9 2 2 1 2) T2 W0 (A,a) = -
16

T - "4h w +6pX + 4x 
- (3p2 h2w2 + l0ph2w2 X + 21p2 X 2 + 2pX3 )T 

+ [8p3 Xh2w2 - 24p3 X 3
- 4p2 (X 2 + h2w2

)
2]. (2.7) 

This means that the non-equivalence line T = 0 is a branch of the curve W(A, a2
) = 

0 (which, in general~ does not coincide with the associated resonance curve). 

The associated resonance curve C can be identified by the associated frequency 
amplitude relationship. It consists of two parts: - the ordinary part C 1 and - the 
critical one C2 • Let us separately analyze each of these two parts. The ordinary 
part cl is located in the ordinary region 

'. (2.8) 

It is noted that, along T = 0, the determinant D is negative: 

(2.9) 

i.e. the non- equivalence line is located in the ordinary region. On the other hand, 
since T = 0 satisfies (2.6), along T = 0 , the algebraic solutions u =sin 0, v = cos (J 

of the system (2.1) satisfy the trigonometrical identity u 2 + v 2 = 1. 

Thus, the non-equivalence line T = 0 is an ordinary. branch - a branch be­
longing to the ordinary part C 1 of the associated resonance curve C. 

The critical part C2 is located in the critical region: 

R2: D = 0 i.e. ~T2 + 4pTX + 4p2 (X2 + h 2w2
) = o 

4 . 
(2.10) 
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and (since the rank of the matrix D is equal to 1) satisfy: 

- The compatibility conditions 

D 1 = 0 i.e. 3T + BpX = O, 

- The trigonometrical conditions 

(2.11) 
I 

(2.q) 

(2.14) 

If w2 is substituted by (~ + 1), the equality (2.10) becomes a quadratic equatiOjll 
of unknown ~. admitting as solutions 

3"( 2 q2a2 h2 
~=-a+----

4 2p 2 

± T 2 - 16p2h 2 + [spTh2 -16p2h2 ( 34"~ a 2 + 2p) + 2p2h 2] 

or approximatively 

(2 .. 1&) 

(2 .16) 

Thus, the critical region is an "hyperbola". It consists of two branches respectiveljY 
located above and under the non-equivalence line T = 0, and admits as asymptotic 

3"( q2 a 2 T · · · 
two lines ~ = - a 2 + -- ± - i.e. the lines A = 0 and H = 0 . 

4 2p 4p 

The lower branch, denoted by D', intersects the abscissa axis at ~ = ± y' p2 ~ h 2 , 

reaches its maximum at a 2 =a~ - 4
p

2
h. Ash increases, D' moves down then dis­

q . 
appears when h > p (it passes into the semi - lower plane R(~, a 2 < 0). 

. . . 4ph 
The upper branch, denoted by D", has a mmtmum at a 2 = a; + - 2 , moves 

q 
up as h increases 

We try to determine the compatible ensemble in these two critical branch' s 

by two conditions (2.11), (2.12). 
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From (2.11), it follows: 

37 3q"2a2 p 
~ = -a2 + --·+ - · (2.17) 

4 8p 2 

Substituting (2.17) into (2.12), we obtain a quadratic equation of unknown a2 

3q4 a 4 - 24(p2 q2 + 2'"'(p2 h 2 + ph2 q2 )a2 + 16(3p4
- 4p2 h 2

- 2p3h2
) = 0. (2.18) 

Approximatively, the two roots of (2.18) are 

2 2 8phvfa ( ) a 1 2 = a* =f 2 • 2.19 
' 3q 

Thus, we obtain two compatible points which are intersection points of the line 

(2.17) and the hyperbola (2.10). 

By I', I" we denote two compatible points. The lower point I' (sign -) -
located in D'.- exists when h is small enough (if h is large, ai < 0). The upper 
point I" (sign +) - located in D" - always exists. As h increases, I' moves down 
then disappears while I" moves up. . 

It remains to verify the two trigonometrical conditions (2.13), (2.14). From 
(2.11), (2.12), it follows 

3T 
X=--, 

8p 

Substituting (2.20) into (2.13), (2.14) leads to 

(2.20) 

(~.21) 

For small h, the two values ai 2 (see (2.19)) are close to w;, (2.21) is satisfied. ' . 
Both I' and I" are critical (nodal) points. Increasing h, critical points I' and I" 
successively disappears: moving down, I' always satisfied (2.21). It is thus critical 
until it passes into the semi-:- lower plane (ai < 0); moving up, I" does not satisfy 
(2.21) when his large enough (it becomes an isolated trivial compatibility point). 

Appr<?ximatively: - if h ~ p v;, both I' and I" .are critical; - if p V: < h < 

V3 1 I' . 't' 1 'f h V3 . . 1 . d . p2 , on y 1s cn t.ca ; - 1 > pT , cnt1ca pomts o not ex1st. 

For fixed values 7 = 0.04, p = 0.01, q = 0.03 the resonance curves in fig. 1, 2, 
3 correspond to h = 0.0015, 0.0040, 0.0088 respectively; the broken line represents 
the non-equivalence line). 

We see that if h is small enough, the resonance curve contains, two critical 

nodal points (fig.l) . As h increases, the upper critical point I" moves up then 
disappears first and the resonance curve has only one critical point- the lower I' 
(fig. 2). If h is large enough, critical points do not exist (fig. 3). 
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T=O 
--- -------- -- - -

D.Q. - --------
T::::O 

0.2 

ll.OO ll.03 A o.o~----~~T-_1~----~~ 
0.00 (}.(}3 

Fig.1 Fig. 2 

Fig. 3 

§3. The original resonance curve 

As it has been noted in §1, the non-equivalence line contains strange elements. 
Weshall demonstrate that for the case examined (system with damping, h > _0), 
the non-equivalence line T = 0 is strange, except its intersection points with . the 
c~rve W0 (A,a2) = 0. By J(A.,a~) we denote the point of interest in T = 0 and 
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0. - its corresponding (associated) dephase. At ·1, we have 

D. = D(Ll., a:) = -:-4p2 (X2 + h2w2
). < 0 

.· (D1) ( 2phwX ) 
smO. = D • = X2 + h2w2 •' (3.1) 

D2 X2 - h2w2 
coso. = (D) • = (x2 + h2w2) • 

(the aste~i~k indicates that the quantity in question. is calculated at 1'). By N(Ll, a2 ) 

- we denote an arbitrary point in the neighbourhood of I, but out off T = 0. At 
N, we have D < 0 (by continuity) and T =/: 0. We introduce an angle e called 
artificial dephase·defi.ned as · 

. - - D1 
stnO = , 

y'D~ + D~ 
- -D2 cosO= · ·. 

y'Di +Di 
(3.2) 

Obviously, :when N tends to I, the artific_ial dephase 0 tends to the associated one 
0.. At N, since T =/: 0, from (1.5), we can express (/o, g0 ) as combinations of 
(!,g) : . 

{ 

fo(l> , a, ~ = r { (2pcosli ~ qa)f + 2p~inli,g }. 

· Yo(Ll,a;O) = T{ -2psin6f+(2pcos0 ;- qa)g}. 
(3.3) 

Using (2.1), (3.2) and regarding that; in the ordinary region (where the non-equiv­
altmce line and its neighbourhood are. located) t hree characteristic determinants 

· D1, D 2 , D identically satisfy 

we can· write (3.3) in the form 

f o ( Ll, a, 0) = 

= y' ~1 

2 {(2pcosO-qa)E+2psinO·K} .{n+JDl+D~} 
T D 1 + D 2 

_ {(2pcos0 - qa)E + 2psin0 ·· K}{Dr + D~ - D 2 } 

- Ty'D~ + D~{D - vDr + Di} 

Yo(~, a, 0) = 

. Tv';t+ D~ { - 2psinU ·E+ (2pcoshqa)K }{n + y'n[ +Di} . 

_ {- 2psin0 · E + {2pcos 6 + qa)K}{ Dr + Di - D2 } 

- Ty'Dr + D~{D - y'Di + D~} 
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. Recall that Dl + n:- D2 = W(~, a2) =TWo(~, a2 ), we obtain 

fo(~ a B) = { (2pcos 6- qa)E + 2psini. K} w, (~ a2 ) 

' · ' vfD~ + D~(D- vfDf + D~ ) 0 
' ' 

(~ a e) _ {- 2psini · E + (2pcosi + qa)K} 2 
go ' ' - J 2 2 ( V 2 2 Wo ( ~' a ) . D1 + D2 D - D 1 +D2 ) 

At limit (.a ---+.a., a ---+ a., 0---+ O.) we have 

Therefore 

fo(~,a,B)---+ lo(~.,a.,O.), go(~,a,B)---+ go(~.,a.,O.), 

D ---+ D. = - 4p2 (X2 + h2w2
)., .J Di + D~--+ - D., 

E---+ E* = - (hwqa) . = -2phw., K---+ K . = 2pX*, 

Wo(.a, a2
) ---+ Wo(.a ., a;), qa---+ qa. = 2p. 

(3.6) 

(3.7) 

(3.8) 

I( .a*, a~) is a representative point of the original resonance curve C0 and o. is 
the "original" dephase if and only iff 0 ( ~ *, a., 8 *) and g0 ( ~ *, a., (J *) simult aneous­
ly vanish. Since hw. f. 0, from (3.8) , it follows that the required conditions lead tp 
Wo(~.,a:) = 0 i.e. I(~., a~) is an intersection point of the non~equivalence line 
T = 0 and the curve W0(~, a2 ) = 0. Summing up, the original resonance curve ~s 
given by the simplified frequency amplitude 

W: (.a 2). - W(~, a2) - 0 
o , a - T - . (3.9) 

(on condition that at compatible points (D = D 1 = D2 = 0) the two trigonomet­
. rical conditions must be satisfied) 

Conclusion 

We have identified the resonance curve of a quasi linear oscillating system 
subjected to linear and quadratic parametric excitations. The so-called associated 
equations has been used and the original resonance curve is obtained from the 
associated one by rejecting the non equivalence line. 
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L~P DUONG CQNG HUONG CUA H~ CHJU 

HAl KICH DQNG THONG SO B~C NHAT VA.' B~C 2 

Xet h~ dao d<)ng a tuyen chju hai klch d<)ng thong so b~c nhat va b~c hai & 
tnr(mg hen> c6 cAn. H~ phtrO'Ilg trlnh lien hc;rp dlr<!C str dvng va kt1t qua cho thay 
du-<rng c{mg hrr&ng "goc" drrqc xac d!nh tir drr<mg c<)ng hml-ng lien hgp b~ng each 
lo~i bd du-(mg khong tu-ang dll"O'Ilg. 
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