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1. Introduction

In the Mekong Delta, annually, flood is one of the three natural factors strong-
ly influenced on agriculture activities and living condition. For a very dense system
of rivers, canals and flood plains, mathematical model is the main tool for plan-
ning and for computation of flood control scenarios. In recent time high and low
flow computation in rivers and canals is good enough for practical purpose, but
all existing computer programs in Vietnam, such as VRSAP, KOD, SAL, have
dealt with overflow by explicit procedure. Therefore sometimes the oscillation or
unstability of solution can not be overcome. This difficulty can be reduced by an
implicit algorithm given in this study. The effectiveness of the proposed method
can be seen when one has to handle a big problem like the flood situation in the
Mekong Delta during 6 months.

2. Hydraulic computation for rivers

2.1. Governing equations

For gradually varied unsteady flow in rivers and canals it is customary to use
the following one-dimensional Saint-Venant system of equations, which consists of
a continuity equation and an equation of motion [1]:

Q
B+ 3 = o
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where: H = water level above a datum, @ = discharge, B = width at the water
surface of river cross section including storage averaged for each segment, A =
cross section area, C = Chezy number, ¢ = acceleration due to gravity, R =
hydraulic radius, ¢ = q; + P: lateral in/out flow to unit length where P is the
exchange flow with adjacent plains and ¢; is pumping or discharging flows, T' =
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wind stress over water surface which will be neglected in computation, 6 = water
density, ¢ = time and z = distance along the river.

Hydraulic condition at a junction can be described by conservation law of
water and if only subcritical flow is considered the equality of water levels in all
branches joining at the junction is approximately guaranteed.

2.2. Schematization of the river network and outline of the computation

The river network to be modeled is divided into reaches (branches), linked
together at nodes (junction). Each branch could be further divided into segment
(finite difference element Az) by grid points or sections. External extremities of
the branches are boundaries of the scheme with given water discharge @ or water
level H. Hydraulic structures, such as dam, sluice, weir could also be incorporated
in the system as special river branches with upstream node and downstream node.
Along river branches there exist open adjacent plains, of which submerged areas
constitute the storage for river branches, and also linked plains which are connected
with the river by small water courses, lateral sluices or weir.

The general outline of the numerical method is as follows:

- Applying the Preissmann four point implicit finite difference formulae to
equation (2.1) and (2.2) for every segment within each branch.

- Using recurrent formulae to eliminate H and Q at the intermediate grid
points, and as a result a linear equation system for water level at all nodes of the
whole system is established.

- Finding the solution of obtained equation by any classical method in lmea.r
algebra (e.g. Gauss elimination), after that the recurrent formulae is used to
compute the water level and discharge at intermediate grid points.

- For the algorithm developed in [2] the water level in the plains and the ex-
changed discharge between river and plain are computed explicitly with a weight-
ing coefficient at every time step. But hereafter implicit procedure is applied to
compute water level in the plains at the same time with water levels at river
junctions.

.2.3. Finite difference equations for river segments

The partial derivatives in (2.1) and (2.2) are approximated within a time step
"and a space step by well-known Preissman finite difference scheme for any function
[ as follows [1]:

%[ (s + ) = (G + f:‘)] (2.3)1
d 1 . ’
a—i Fres [o(f?ﬂ‘ll — S L = )] (2.3),

130



af 1

S~ A U = ) + =0 (7 - 1] (23)s
where f™ and f™*! are the values of f at moments ¢t and ¢t + At respectively,
is the weighting coefficient (§ = 0.6667), f; denotes the value of f at cross-section
numbered 1.

2.3.1. Explicit procedure for plain

As mentioned in [2] if water level in the plain and exchange flow P are ex-
plicitly computed or no plain connected to a river segment by substituting (2.3)
in to (2.1), (2.2) and neglecting the small terms of second order, relatively with
Af = frtl — f_ the following resulting linear equations for a segment [i,7 + 1]
are obtained:

Al-H;+B1-Q;+C1-H;y1+D1-Qiy) = E1 (2.4)1
A2-H;+B2-Q;+C2-H;y1+ D2 Q4 = E2 (2.4)2
where ¢ = j1,7J2,...,J8—1 Within a branch which has N sections numbered from

J1 — jn- The coefficients A1, Bl, C1, D1, E1, A2, B2, C2, D2, E2 are known
functions of water levels, discharges and topographic conditions at previous time
step t. The detailed formulation of the coefficients in (2.4) has been presented in

3].
2.3.2. Implicit procedure for plains

Suppose the kt* plain with water level denoted by Zji is connected to the
segment [7,7 + 1| and let P be exchange flow between the plain and the segment,
using Taylor expansion the following expression is obtained

aP™ apPm
— prtl(Zr 7\~ PY(ZF. Z —Z»—Az.* B Y 2.
P P (Z37Zk) P( 19 k)+a: ‘+8Zk k ( 5)
where
Z; = _Ii‘_%ﬂ‘ , AZy=2Z0"'-Zp, | AZ} = Z:H - 73"

or in this case (2.5) can be rewritten as

19P" 19P" opP"
Ea—Z*AH{_,_l + -‘a AH; + ‘_AZk (2.6)
%

~ P"(H™ . HP. Z" e
Pw~ PM(HY, HY, ZE) + 2907} 9z

here indexes n and n + 1 denote values at moments ¢ and ¢ + At, respectively.

If the same finite difference box scheme (2.3) and the same linerization pro-
cedure are applied to'(2.1) - (2.2) combined with QZ.G) the system (2.4) now is:

Al-H;+B1-Q;+C1-Hyy1+ D1:-Qiyy=E1+R1- 2 (2.7):
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A2 -H;+B2-Q;+C2-Hiy1+D2-Qiy1 = E2 (2.7)2

where o
leAl—EEZ?,
Bl = BL+ P55 - 3 55 (B — BY) - 55
— rop™ e
C1=Cl—5ﬁ?, R1= -

Note that the difference between (2.4) and (2.7) is seen in the first equation. If
there is no plain linked to the segment the two systems are the same.

2.4. Recurrent formulae in double sweep procedure

For the solution of eq. (2.4) with the algorithm presented in [2] the water
level in the plains is explicitly computed, therefore, only water levels at river
cross-sections are used for sweep procedure. Hereafter the implicit procedure for
water level in the plains is applied, so at the same time, water levels both in the
plain and river are presented in the recurrent formulae in double sweep procedure.
Two sweep procedures will be applied. The first sweep following the positive
direction of each branch constitutes the determination of recurrent coefficients for
every internal and external branch.

H; =p;-Qi+gq;-Hj + xi-*Zg+ri,

2.8
Qi1 =2t:-Qi+tvi-Hi+m; - Hj, +w;-Zg+s;. (28)

The recurrence is started with:
P, =0, qjl=]-1 X.jle, T3 =0

and following the negative direction of a branch the following backward sweep will
be
Hi=p! - Qi+q Hjy +xF 2k +r],

_ 2.9
Qiv1 =t -Qi+v} -Hi+m} H;, +w} 2y +s}. L

ey ‘The recurrence is started with: -

e * __ + P B
Py =0, 5. =1, A = (), Tiv ™ 0.

Egs. (2.8)-(2.9) are formulated with the assumption that there is only one plain
connected to one river segment. If there are K plains connected to a segment then
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(2.8) and {2.9) become:

| K
Hi:Pi'Qi+Qi'Hjl+ZX:‘n'Zn+"s’a :

n=1

i (2.10)
Qi1 =t Qi+vi - Hi+m;-Hj + ng‘nZnJrsu
n=1
K
Hi=p! Qi+q Hjy+) xh Zntri,
P (2.11)

K
Qiv1 =t Qu+vi -Hi+mi Hjyy+) wh Z,+s}
n=1
for forward and backward sweeps, respectively. Here Z denotes water level at the
plain center and subscripts n, k denote the n** and kt* plains.

Note that j;, j~ correspond to starting and ending numbers of a river branch,
respectively.
3. Hydraulic computation for plains

Let Z; be water level at the center of the t** plain. This plain can be connected
to another plain or a river segment. The water balance equation written for this
plain in the finite difference form is following:

F aQ:l;k .~ n 2 ?,k
(Kt—ozk: - )AZ,-—Rm+Zk:Q;,k+0-zk:a—ZkAZk (3.1)

where: F = submerged surface area of the it plain, Q) = exchange flow at
moment ¢t with river segment(s) or with adjacent plain(s) numbered k, R,, =
rainfall; Af = fot+l — f»,

Since the plain-river or plain-plain connection is multiform, it is proposed
to be schemed by a weir connected between river and plains, that means the
exchanged flow is expressed by: -

For free flow:
Qir=0.386-p-A-H'2 (3.2)

For submerged flow:
Qi =p-A-(H—h)'?, (3.3)
h = min(L'k, L,‘); H = ma-x(Lk, Lt)
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where u is discharge coefficient, A4 is flow area over weir crest, L is the water level
on river compared to weir crest, L; is the water level on plain compared to weir
crest, Q;, k is conventioned positive for the direction from river (or other plain)

into the s** plain.

~ From practical poiht of view, in the case of small depth over weir crest the
oscillation will appear and in order to avoid this phenomenon it should take into
computation the derivative sign change of (3.2) and (3.3) as indicated in [3].

Using (3.2) or (3.3) equation (3.1) can be rewritten in the following form:

ZA?.k Zi+ Z B3, - H,, + C3-2; = D3 (3.4)

where K, M are number of plains and number of river cross-sections connected to
the #*” plain, respectively; A3, B3, C3 and D3 are known coefficients; Z, Z; are
water levels at the center of the kt* and #** plains, respectively; H,, is water level
at river cross-section numbered m.

4. Establishment of node and plain equations

4.1. For internal branches

For a branch linking two junctions (nodes) I and J, of which cross-sections
are numbered from j; to jy, one has unknown water levels at two ends H ¥y AL
and junction condition gives H; = H;,, H; = Hj,,

Therefore the first equation of (2.10) can be rewritten for ¢ = yn:

K
= (Hy ~ iy Hy = XiunZn) = Qs + i (41)

Pjn — in
and similarly the first equation of (2.11) can be rewritten for i = j, as following:

1 r
— (gt Hs — Hy + Z XiinZn) = =Qj, = & - (4.2)

jl , n—1 pj,

4.2. For external (boundary) branches

The positive direction of external branches has been conventioned outwards,
i.e. Iis internal node, and J is boundary node where H;, or Q,, (or rating curve)
is.given, therefore, only H; = H; must be computed.
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If @ is given at boundary: Q;, = @p, then substituting H; from (4.1) into
(4.2), after some transformations the resulting expression has the following form:
>

K
1 . 1
+ + xr’
¥ [(le‘I;N‘"l)HI‘I'E (qJ'lXan+X;":n)Zn] = —le_ T8 [r;;‘I'(ijQB‘f‘TjN)q;;]‘
le n=1 pjl

(4.3)

If H is given at boundary H; = Hp, from (4.2), one can obtain the following
expression

K -
: 1
4 (" Hi+ ), x;-t,.Z,.) B ™ 3 (r} + 4} Hp). (4.4)
- = 7

4.3. Equation for water level at nodes (junctions) and water level in
the plains

The water balance at each node I leads to the following equation:

JV JR
) Qb =D @ +ei (4.5)
k=1 k=1

where JV = number of branches going towards the node I, JR = number of
branches leaving the node and going to the other node; j; = the last section of
the mentioned above branches and j; = the first section of them, Q} = lateral
flow to the node.

Substituting Q;, and Q;, from (4.1) to (4.4) into (4.5) the following so-called
node equations are obtained:

S S K
ey Hy+ Y apHr+) Y b5, 2 =Q5+es for J=1,...,L  (4.6)
I=1 I

=1 n=1

where L = number of internal nodes; S = number of river branches going from or
into the J** node; K = number of plains connected to each river branche belonging
to the node J; a1, by are components of the coefficient matrix; Q% + ¢s: right
hand side vector.

For a river system consisting of L internal nodes and M plains one has L
equations of (4.6) form for L + M unknowns which are water levels at L nodes
and those at center of M plains. For each plain equation (3.4) is added to the
system (4.6), so one has L + M equations for L + M unknowns. The coefficient
matrix of (4.6) and (3.4) is sparce and its principle diagonal is dominant, therefore
to the obtained system of equations any classical method of linear algebra can be
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applied. In order to reduce memory requirement and computer time the method
developed by Gupta [4] is used for this study.

Note that besides the normal branches entering or leaving a node, there are
also structures linking two nodes I and J. Because Q; = Q a linear relationship
between the water level at two sides Hy, H; of the structure has been established
and taken part in the equation (4.6). The detailed procedure for the insertion of
structure into the river system can be seen in [2].

5. Conclusion

In this study an implicit computation of overflow between rivers and flood
plains is presented. Using the algorithm the size of the coefficient matrix can be
reduced, computer time is shorten. The oscillation and unstability of solution can
be overcome even for a very complicated system of canals, rivers and flood plains.

This study is supported in part by the National Fundamental Research Pro-
gram Coded 3.2.5
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MOT THUAT TOAN AN PE TINH TOAN DONG LU TRAN

Cho dén nay céic chwong trinh méy tinh & Viét Nam dung thuit toin hién dé
tinh li tran dong, mic du dong chdy trong séng tinh an. Do mé phdng dong tran
" nhw dong qua dap tran nén cé khi nghiém bi dao déng va khéng én dinh. Trong
bai bdo trinh bay mét thuit toan tinh an dong thoi mue nwéc tai cac hop lwu va
muc nudc tai tdm cdc 6 rudng. Véi thuat todn nay ma tran hé s6 thwa va nhd.
 Thuit toin cia Gupta gitp cho tinh todn nhanh va én dinh vi thé cé thé st dung
d€ gidi quyét bai todn 16m va tranh dwoc s dao dong va mét 6n dinh cda nghiém.
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