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·1. Introduction 

In the Mekong Delta, annually, flood is one of the three natural factors stronq;­
ly influenced on agriculture activities and living condition. For a very dense syste:m. 
of rivers , canals and flood plains, mathematical model is the main tool for p laJ!l­
ning and for computation of flood control scenarios. In recent time high and lo~ 
flQw computation in rivers and canals· is good enough for practical purpose, btJ,t 
all existing ·computer programs in Vietnam, such as VRSAJ>, KOD, SAL, have 
dealt with · overflow by explicit procedure. Therefore sometimes the oscillation ~r 
unstability of ~olution can not be overcome. This difficulty can be reduced by an 
implicit algorithm given in this study. The effectiveness of the proposed meth~d 

can be seen when one has to handle a big problem like the flood situation in t1e 
Mekong Delta during 6 months. · · • 

2. Hydraulic computation for rivers 

2.1. Governing equations 

For gradually varied unsteady flow in rivers and canals it is customary to u1e 
the following one-dimensional Saint-Venant system of equations, which consist s ?f 
a continuity equation and an equation of motion [1]: · 

BaH + aQ = q 
at ax . 

(2.t) 

aQ !._'(Q2) A aH gQjQI :_ BT = o 
at + ax A + g ax + AC2 R o (2.2) 

where: H = water level above a datum, Q = discharge, B = width at the water 
surface of river cross section including storage averaged for each segment, A t= 
cross section area, C = Chezy number, g = acceleration due to gravity, R = 
hydraulic radius, q = q1 + P: lateral in/ out flow to unit length where P is the 
exchange flow with adjacent plains and q1 is pumping or discharging flows , T = 

129 

) 



wind stress over water surface which will be neglected in computation, {J = water 
- " 

density, t = time and x = distance along the river. 

Hydraulic condition at a junction can be described by conservation law of 
water and if only subcrit ical flow is considered the equality of water levels in all 
branches joining at the junction is approximately guaranteed. 

2.2. Schematization of the river network and outline of the computation 

The river network to be modeled is divided into reaches (branches), linked 
together at nodes (junction) . Each branch could be further divided into segment 
(finite difference element 6-x) by grid points or sections. External extremities of 
the branches are boundaries of t he scheme with given water discharge Q or water 
level H . Hydraulic structures, such as dam, sluice, weir could also be incorporated 
in the system as special river branches with upstream node and downstream node. 
Along river branches there exist open adjacent pl.ains, of which submerged areas 
constitute the storage for r iver branches, and also linked plains which are connected 
with the river by small water courses, lateral sluices or weir. 

The general outline of the numerical method is as follows: 

, - Applying the Preissmann four point implicit finite difference formulae to 
equation (2;1) and (2.2} for every segment within each branch. 

- Using recurrent formulae to eliminate H and Q at the intermediate grid 
points, and as a result a linear equation system for water level at all nodes of the . ~ . . 
whole system is established. 

_ - Finding the solution of obtained equation by any classical method in linear 
. algebra (e.g. _ Gauss elimination), after that the recurrent formulae is used to 
compute the water level and discharge at intermediate grid points. 

_- For the algorithm d~veloped in [2] the water level in the plains and the ex­
changed discharge between river and p lain are computed explicitly with a weight­
ing coefficient at every time step. But hereafter implicit procedure is applied to 
compute water level in t he plains at the same t ime with water levels at river 
junctions. 

~ 2.3. Finite difference equations for river segments 

--- The partial derivatives in (2.1) and (2.2) are approximated within a time step 
-and a space step by well..:known Preissman finite difference scheme for any function 
I as follows [1] : 

1 ~ ~ [o-ur+~·+ 1r+•) + (1- o) ur-H +It)] (2.3)t 

:~ ~ Xi - 1Xi - 1 [our+-+tl - lr+l) + (1 ~ o)(li+t - li)] 
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(2.3)a 

where fn and ln+I are the values of I at moments t and t + f:l.t respect ively, (} 
is the weighting coefficient (8 = 0.6667), /i denotes the value off at cross-secti~n 
.numbered i. 

2.3.1. Explicit procedure for plain 

As mentioned in [2] if water level in the plain and exchange flow P are e~­
plicitly computed or no plain connected to a river segment by substituting (2. ) 
in to (2.1), (2.2) and neglecting the small terms of second order, relatively wi h 
!:l.l = In+ I - In, the following resulting linear equat ions for a segment [i, i + ~ ] 
are obtained: 

(2.4) 1 

· A2 ·Hi+ B2 · Qi + C2 · Hi+t + D2 · Qi+ l = E2 (2.412 

where ·i = j 1 ,i2, . . . ,iN- I within a branch which has N sections numbered fr~ 
it --.iN· The coefficients A1, B1, C1, D1, E1, A2, B2, C2, D2, E2 are kno n 
functions of water levels, discharges and topographic conditions at previous ti e 
step t . The detailed formulation of the coefficients in (2.4) has been presented n 
[3]. 

2.3.2. hnplicit procedure for plains 

Suppose the kth plain with water level denoted by Zk is connected to t l}e 
segment [i, i + 1] and let P be exchange flow between the plain and the segmen~, 
using Taylor expansion the following expression is obtained 

where 

n + l ( * ) n( * ) a1 n * apn . 
p = p . z, , z. "'P z, , z. + al t>Z, + az. t>z. 

zt = Hi+t2+ Hi ' f:l.Zk = z;:+l- z;: , I f:l.Zt = Zi*n+l - z t n 

or in this case (2.5) can be rewritten as 

~ n( n n n) ! apn . . ! ~pn . apn AZ ( ) 
P.,.... P Hi+ I, Hi , zk + 2 azt f:l.H,+ t + 2 f Zt f:l.H, + azk ~ k 2.6 

here indexes n and n + 1 denote values at momen~s t and t + f:l.t , respectively. 

If the same finite difference box scheme (2.3) and the same linerization pr~­
cedure are applied to "(2.1) - (2.2) combined wit_h ~2 .6) the system (2A) now is: 

A1 ·Hi+ B1 · Qi + C1 · Hi+t + D1 · Qi+' = E1 + R1 · Zk (2.7)1 
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(2.7)2 

where 
- 18Pn 
A1 = A1 - 2 az~ , 

I 

- n( * ) 1 apn ( n Hn) apn zn 
.E1 = El + P zi, zk - 2 az~ Hi+l - i - azk k, 

I 

- 1 apn - apn 
Cl = Cl - 2 az~' Rl = azk 

I 

Note that the difference between (2.4) and (2.7) is seen in the first equation. If 
there is no plain linked to the segment the two systems are the same. 

2.4. Recurrent formulae in double sweep procedure 

For the solution of eq. (2.4) with the algorithm presented in [2] the water 
level in the plains is explicitly computed, therefore, only water levels at river 
cross-sections are used for sweep procedure. Hereafter the implicit procedure for 
water level in the plains is applied, so at the same time, water levels both in the 
plain and river are presented in the recurrent formulae in double sweep procedure. 
Two sweep pr~cedures will be applied. The first· sweep following the positive 
direction of each branch constitutes the determination of recurrent coefficients for 
every internal and external branch. 

H i = Pi· Qi.+ 9i · Hi1 +Xi· zk + ri, 

Qi- 1 = ti. Qi +Vi. Hi+ mi. H;l + Wi. zk + Si· 
(2.8) 

The recurrence is started with: 

Pi! = 0, 9;1 = 1, Xjl = 0, rii = 0 

and following the negative direction ofa branch the following backward sweep will 
be 

Hi = Pt · Qi + qt · HjN + xt · Zk + rt, 
Qi+l = tt · Qi + vt ·Hi.+ m; · H;N + wt · Zk +sf. 

(2.9) 

·The recurrence is started with: · · : 

. p-t- = 0 
JN ' X-t- = 0 

JN ' 
r-t- = 0. 

JN 

Eqs. (2.8)-(2.9) are formulated with the assumption that there is only one plain 
connected to one river segment. If there are K plains connected to a segment then 

132 



(2.8) and {2.9) become: 

K 

Hi ·= Pi' Qi + Qi · H j1 + L Xin ' Zn + Ti , 
n=l (2.10) 

K 

Qi-1 = t i · Qi + Vi· Hi + ffli · H;1 + L WinZn + Si, 

n=l 

K 

Hi = Pt · Qi + qt · H;N + L X~ · Zn + rt, 
n=l (2.11) 

K 

Qi+l = tt · Qi + vt · Hi+ mt · H;N + L wt · Zn + st 
n= l 

for forward and backward sweeps, respectively. Here Z denotes water level at t lfe 
p lain center and subscripts n, k denote the nth and kth plains. I 

Note that j 1 , iN eorrespond to starting and ending numbers of a river branc~ , 
respectively. 

3. Hydraulic computation for plains 

. Let Zi be water level at the center of the ith plain. This plain can be connected 
to another plain or a river segment. The wat~r balance equation written for this 
plain in the finite difference form is following: 

(3.1 ) 

where: F = submerged surface ar~a of the ith plain, Qi,k _ exchange flow · at 
moment t with river segment(s) or with adjacent plain(s) numbered k, Rm = 
rainfall; !:if= Jn+l - fn . · 

Since the plain-river or plain-plain connect ion is multiform, it is proposed 
to be schemed by a weir connected between river and plains , that means the 
exchanged flow is expressed by: 

For free flow: 
Qi k = 0.386 ·11· A· H 112

• , (3.2) . 

For submerged flow : 

Qi,k = 11 · A · (H- h) 112
, (3.3) 

h = min(Li. , Li)i H = max(Lk, Li) 
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where p, is discharge coefficient, A is flow area over weir crest, Lk is the water level 
on river compared t() weir crest, Li is the water level on plain compared to weir 
crest, Qi,k is conventioned positive for the direction from river (or other plain) 
into the ith plain. 

. From practical point of view, in the case of small depth over weir crest the 
oscillation will appear and in order to avoid this phenomenon it should take into 
computation the derivative sign change of (3.2) and (3.3) as indicated in [3]. 

Using (3.2) or (3.3) equation (3.1) can be rewritten in the following form: 

K M 

L A3k .·zk + L B3.-n . Hrn + C3. zi = D3 (3.4) 
k=l m=l 

where K, Mare number of plains and number of river cross-sections connected to 
the ith plain, respectively; A3, B3, C3 and D3 are known coefficients;··zk, Zi are . 
water levels at the center of the kth and ith plains, respectively; H m is water level 
at river cross-section numbered m. 

4. Establishment of node and plain equations 

4.1. For internal branches 

For a branch linking two junctions (nodes) I and J; of which cross-sections 
are numbered from i 1 to iN, one has unknown water levels at two ends Jlr , H J 

and junction condition gives H / =Hit , HJ = H;N . 

Therefore the first equation of (2.10) can be rewritten for i =iN: 

(4.1) 

and similarly the first equation of (2.11) can be rewritten for i = i 1 as following: 

(4.2) 

4.2. For external (boundary) branches 

The positive direction of external branches has been conventioned outwards 
' . ' 

i.e. I is internal node, and J is boundary node where H;n or Q;~ (or rating curve) 
is .given, therefore, only H1 = Hj

1 
must be computed. 
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If Q is given at boundary: Q;N = QB, then substituting HJ from (4.1) h1-to 
(4.2), after some transformations the resulting expression has the_,following for~:­

..,..'-.1 

. 1 K . 1 

t [(qtq;N - 1)H1+ L (qtx;Nn+xtn)zn] = -Q;~-t[rt+(P;NQB+r;N)q;t]. 
~~ n=l ~~ 

{4.3) 
If H is given at boundary HJ HB, from {4.2), one can obtain t_he following 
expression 

4.3. Equation for water level at nodes (junctions) and water level in 
the plains 

The water balance at each node I leads to the following equation: 

JV JR 

. L:QJN = L:Q11 + Qj 
k= l k= l 

where JV = number of branches going towards the node I, J R = number pf 
branches leaving the node and going to the other node; iN = the last section of 
the mentioned above branches and j 1 = the first section of them, Qj = lateral 
flow to the node. 

Substituting Q;N and Q;1 from (4.1) to (4.4) into (4.5) the following so-call~d 
node equations are obtained: 

s S K 

aJJHJ + L aJIH1 + L L b5nz~ = Qj + CJ for J = 1, . .. , L (4.6) 
1= 1 1= 1 n = l 

where L = number of internal nodes; S = number of river branches going from or 
into the Jth node; K = number of plains connected to each river branche belongill[g 
to the node J; aJI , bJn are components of the coefficient matrix; Qj + CJ: rig~t 
hand side vector. 

For ·a river system consisting of L internal nodes and M plains . one has ~ 
equations of ( 4.6) form for L + M unknowns which are water levels at L nodes 
and those at cent~r of M plains. For each plain equation (3.4) is added to the 
system (4.6) , so one has L + M equations for L + M unknowns. The coefficient 
matrix of (4.6) and {3.4) is sparce and its principle diagonal is dominant, therefore 
to the obtained system of equations any classical method of linear algebra can be 
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applied. In order to reduce memory requirement and computer time the method 
developed by Gupta [4] is used for thif! study. 

Note that besides the normal branches entering or leaving a node, there are 
also structures linking two nodes I and J. Because Q I = Q J a linear relationship 
between the water level at two sides HI, H J of the structure has been established 
and taken part in the equation (4.6). The detailed procedure for the insertion of 
structure into the river system can be seen in [2]. 

5. Conclusion 

In this study an implicit computation of overflow between rivers and flood 
plains is presented. Using the algorithm the size of the coefficient matrix can be 
reduced, computer time is shorten. The oscillation and unstability of solution can 
be overcome even for a very complicated system of canals, rivers and flood plains. 

This study is supported in part by the National Fundamental Research Pro­
gr-am Coded 3.2.5 
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MQT THU~T TOAN AN DE TINH TOAN DONG LU TRAN 

Cho d~n nay cac chtrO'Ilg trlnh may tinh 6- Vi~t Nam dung thu~t toan hi~n d~ 
tinh Iii tran dBng, m~c du dong chay trong song tinh ~. Do mo phong dong tra.n 
nhtr dong qua d~p t:r:an nen c6 khi nghi~ni bj dao dc}ng va khong c5n djnh. Trong 
bai bao trlnh bay m{>t thu~t toan tinh ~ d8ng thai mv-c mr&c t~i cac hqp lu-u va 
m~ nu-&c t~i tam cac o ruc}ng. Vai thu~t toan nay rna tr~ h~ s5 thu-a va nh6. 
Thu~t toan cua Gupta giup cho tinh toan nhanh va 5n djnh vi th~ c6 th~ str d\lng 
d~ giru quyet bai toan l&n va tranh dm;rc sv- dao d9ng va mat 5n djnh cua nghi~m. 
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