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CALCULATION OF THE GOFFERED MULTILAYERED
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THE FINITE ELEMENT METHOD
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SUMMARY. In the present paper, the goffered multilayered composite cylindrical shells

is directly calculated by finite element method. Numerical results on displacements, in-
ternal forces and moments are obtained for various kinds of external loads and different
boundary conditions.

1. Introduction

The classical methods for analyzing shell structure yield governing differential
equations whose complexity depends greatly on the shell geometry.

Analytical solutions of these equations are available only for shells with simple
geometric forms and for restricted boundary conditions.

The finite element method have been suggested for more general shell shapes.

In [3], by using the effective modulus theory and Seydel’s assumptions, Dao
Huy Bich et al. replaced a goffered shell by a equivalent shallow shell and the
equilibrium equations for the shallow shell were derived. In the present paper,
the goffered multilayered composite cylindrical shells is directly calculated by the
using finite element method.

2. Model and fundamental equations of the finite element method

2.1. Finite element mesh

Let R, L and h respectively are the radius, length and thlckness of the goffered
multilayered composite cylindrical shells. :

The homogennization method for studying compbsite materials had been in-
troduced. in [1]. By this method the elastic layered—comp051te material reduces to
the set of anisotropic elastic material.
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The finite element method implies an idealization of the shell surface as an
assemblage of discrete structural elements. In this study, the shell with goffered
cylindrical shapes is represented by rectangular flat elements.

Consider a typical rectangular flat element subjected simultaneously to in-
plane and bending actions

/ /.

w 8y

Fig. 1

2.2. The stiffness matrix for in-plane stress

The state of strain is uniquely described in terms of the u and v displacement
of each typical node. The minimization of the total energy potential let to the
-stiffness matrices described there and gives

{F?} = [k*){67}
where {67} is the vector of nodal displacements
{67} = {u; v 45 v; Up, Um Up vp}T
{FP?} is the vector of nodal forces
{FP} = {Nm’ Nyi Nzj Nyj Nem Nym Nazp Nyp}

The stiffness matrix of the rectangular elements in plane stress is defined from
relationship as

[kP] = / (B]T D] |B] hdzdy

[B] is the strain displacement matrix in-plane stress and it is defined in chapter 4,

(2].
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Elasticity matrix [D] for orthotropic materials is given by [2].

2.3. The stiffness matrix for bending state

Similarly, when bending was considered, the state of strain was given uniquely
by the nodal displacement 6, and 8,. This resulted in stiffness matrices of the type

{F*}y = (k%] {6"}
with
{5b} = {w,- Ozi Oyi wj 025 Oyy W Oz Oym wp Ozp 0yp}T
{Fb] = {Nzi M Myi sz M::j Myj Nzm Mz, Mym sz sz MyP}T
In which
¥ = [ [ 1817 (D" 118 hdzay

[B*] is the strain displacement matrix in bending of plate and it is defined in
chapter 10, {2]; [D*] is the elasticity matrix for orthotropic material and it is
defined in chapter 10, (2]

2.4. The stifness matrix for the shell element

The stiffness matrix for the shell element may therefore be obtained by
superimposing of the two matrices: The stiffness matrix for the plane stress
finite element and the stiffness matrix for the bending plate. The shell element
has 6 degrees of freedom at each node

_ T
{6:} = {ui vi w; 055 05 024}
and the appropriate “forces” as
T
{Ft} = {Nzi Nyi Nzi M:ci Myi Mzi}

The relationship between the corresponding nodal displacements is as follows

{Fi} [kii]  [kis]  [Kim]  [kip] {6:}
{FJ'} - (k5] [kjj] [kjm] [kjp] {6;}
{Fm} (kmi]  [kmj]  [kmm] [kmp] [ ] {6m}
{Fp} ["’pi] [km’] [kpm] [kpp] {517}

or

{F}° = [k|2ax24{6}°.

In which, each stiffness matrix [k,,] is now made up from the following submatrices
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[ 0 0 0 07
00 0
[kl = 10 0 [k2.] 0
00 0
00 0 0 o0 o]

2.5. Transformation to global co-ordinates

The stiffness matrix derived in the previous section used a system of local
co-ordinates. Transformation of co-ordinates to a common global system (which
now will be denote by z'y’z’, and the local system by zyz) will be necessary to
assemble the elements and to write the appropriate equilibrium equations. The
forces and displacements of a node transform from the global to the local system
by a matrix L giving

{6} = [L{&}, {F}=[L{F}

5= 53

with [A] being a three by three matrix of direction cosines of angles formed between
the two sets of axes. The stiffness matrix of an element in the global co-ordinates
becomes

in which

(K] = [T)" k[T

2.6. Structural stiffness matrix

We can write equilibrium equations for structure

[K1{6} = {R} (2.1)

where [ K] is structural stiffness matrix, and it is assembled from the stiffness ma-
trices element by the standard way, {6} is the nodal displacements of the structure,
and {R} is the consistent load vector of the structure. The nodal displacements
are obtained by solving the equation (2.1). The resulting displacements calculated
are referred to the global system.

The nodal displacements in the local system {6} are then computed by

{6} = [T{s}
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These displacements can be decomposed into in-plane displacement '{6" } and bend-
ing displacements {6*}. The element stresses can be obtained as follows

{o"} = [D|[B|{s*} = [S*){6"}

{0°} = [D*][B*){6°} = [S*){6°}.

The stress at arbitrary point in the element is a combination of the above in

plane stresses and bending stresses. The strain at arbitrary point in the element

is defined as follows ' S : ’
{e?} = [B]{6"}

{c"} = [B*|{6"}.

3. A procedure for solving the problem

FEA, consultancy department is a UK leader in the application of finite
element technology. The LUSAS of FEA was recognized in the course of different
application led to the development of more sophisticated general systems.

The goffered cylindrical shells is calculated by using LUSAS program.

At first, we must established the function coordinates refer to the co-ordinates
of all the nodal points. The shell is devided into the subdivisions following

Subdivision 1 o
7 ry = 0

1
vii = Reos L= D7

 — 1w .
zl,-=R~—Rsin(1 n) (f=1,2,...,n+1)

n is element numbers are devided refer to the directional cross vault

. Subdivision 2

4H? + €2 — 441a . (27a
=g = Han (T7)
Tg=a -
Y2i = (H1 + R)cos G _nl)w
22 = R — (R + H,;)sin (= Y=
n
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Subdivision 3

Subdivision 4

Subdivision 5

Subdivision 6

Subdivision 7

Subdivision 8

Subdivision 9

¢
I3z = —
a

y3: = (H + R) cos ( —nl)ﬂ‘

z3i = R — (R + H)sin

z4=£1—a

Yai = Y2¢y R4 = 224

x5=21

Ysi = Viiy 251 = 214

Tg =£1 +b
4H? + £2 — 443b :
Hy, = — _Hsm(
) — 1
Yei = (R — Hj)cos (1)
(s-1)x

z6; = R — (R — Hy)sin

[ 4
:7=¢1*32

Yri = Y3:: 270 = 234

Ig=l1+£2—b

¥8i = U6:: 28i — 261

o =& + 4L
Yo = Viiy  29i = 214
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The second step is the determination of material properties. By using the
homogenization method, the multilayered composite material reduces to the

orthotropic material.

The third step is the insertion of prescribed loading conditions

1) Uniform distributed load p from

outside

2) Uniform distributed load p from inside

3) Wind load

Diagram of wind load is under the form

Zz
e t—— a.6P
T T X r
) K3 g 3 2 4
1-08P

The final step is the insertion of prescribed boundary conditions

The boundary lines along generating line are strictly clamped.

The remains are free or simply supported.

4. Numerical results

1) Data input : n =20
"R =6190mm
£ = 370mm
L = 17000 mm

H =188 mm
£2 = 190 mm
h =5mm

E, = E; = 25000 N/mm?, v = 0.15, G = 3000 N/mm?, p = 0.00147 N/mm?
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2) Static analysis

Numerical results on displacements, internal forces and moments are obtained
for various kinds of external loads and different boundary condltxons We repre-

", sented some typical cases

Case 1 - Uniform distributed load p from outside

- The boundary lines along generating line are strictly clamped and the

remains are free. Fig.2 shows the deflection on middle line of the cross-section of
the shell.

The internal forces indicated in Fig.3, Fig.4 and Fig.5.
The bending moments indicated in Fig.6, Fig.7 and Fig. 8
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Case 2. - Wind load

- The boundary lines along generating line are strictly clamped and the
remains are. free Fig.9 shows the deflection on middle line of the cross-section of

the shell.
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Fig. 9
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The internal forces indicated in Fig.9, Fig. 10, Fig. 11 and Fig.12
The bending moments indicated in Fig.13, Fig. 14 and Fig.15
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Comment

The finite element method implies an idealization of the shell as an assemblage
of discrete structural elements. Calculate results are found the results of argument.
It is seem that the boundary conditions, loads and shape are symmetric then the
deflection and internal forces are symmetric.

Conversely, it is not the case for the wind load (asymmetric).

5. Conclusions

In this paper, by using the finite element method, the goffred multilayered
composite cylindrical shells is directly calculated without assumptions. The author
would like to thank Prof. D. Sc. Dao Huy Bich for helping her in completing this
work. This paper is completed with financial support from the National Basis
Research Programe in Natural Sciences.
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TINH TOAN VO COMPOSIT LUGN SONG NHIEU LOP
BANG PHUONG PHAP PHAN TU HO'U HAN

Trong bai bdo ndy, vd tru composite nhiéu 16p lwen séng dugce tinh todn tryc
ti€p bang phwong phip phin ti hiru han. Céc két qud s6 13 chuyén vi, néi lwc
va md men dat dwoc cho cac loai khic nhau cia tdi trong ngodi va cic diéu kién
bién khac nhau.
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