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SUMMARY. In the present paper, the goffered multilayered composite cylindrical shells 
is directly calculated by finite element method. Numerical results on displacements, in­
ternal forces and moments are obtained for various kinds of external loads and different 
boundary conditions. 

1. Introduction 

The classical methods for analyzing shell structure yield governing differential 
equations whose complexity depends greatly on the shell geometry. 

Analytical solutions of these equations are available only for shells with simple 
geometric forms and for restricted boundary conditions. 

The finite element method have been suggested for more general shell shapes. 

In [3], by using the effective modulus theory and Seydel's assumptions, Dao 
Huy Bich et al. replaced a goffered shell by a equivalent shallow shell and the 
equilibrium equations for the shallow shell were derived. In the present paper, 
the goffered multilayered composite cylindrical shells is directly calculated by the 
using finite element method. 

2. Model and fundamental equations of the finite element method 

2.1. Finite element mesh 

Let R, Land h respectively are the radius, le~.gth and thickness of the goffered 
multilayered composite cylindrical shells. · 

The homogennization method for studying composi~e materials had been in­
troduced. in [1]. By this method the elastic layered-composite material reduces to 
the set of anisotropic elastic material. .· 
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The finite element method implies an idealization of the shell surface as an 
assemblage of discrete structural elements. In this study, the shell with goffered 
cylindrical shapes is represented by rectangular flat elements. 

Consider a typical rectangular flat element subjected· simultaneously to in­
plane and bending actions 

z. 

p 
r-------~--~~-----------,m 

J 

Fig.1 

2.2. The stiffness matrix for in-plane stress 

The state of strain is uniquely described in terms of the u and v displacement 
of each typical node. The minimization of the total energy potential let to the 
stiffness matrices described there and gives 

where { 6P} is the vector of nodal displacements 

{ FP} is the vector of nodal forces 

{FP} = { Nzi N 11i Nzj N 11j Nzm N 11m Nzp N 11p} T 

The stiffness matrix of the rectangular elements in plane stress is defined from 
relationship a.S 

(kP) = I I [B]T [D) [B) hdxdy 

(B) is the strain displacement matrix in-plane stress and it is defined in chapter 4, 
[2]. 
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Elasticity matrix [D] for orthotropic materials is given by [2]. 

2.3. The stiffness matrix for bending state 

Similarly, when bending was considered, the state of strain was given uniquely 
by the nodal displacement 8z and 811 • This resulted in stiffness matrices of the type 

with 
{ bb} = { Wi Oxi Oyi Wj Oxj Oyi Wm 8xm Oym Wp Oxp 011p} T 

{Fb] = { Nzi Mxi Myi Nzi Mxi Myj Nzm Mzm Mym Nzp Mxp Myp} T 

In which 

[kb] = I I [B*f[D*][B*]hdxdy 

[B*] is the strain displacement matrix in bending of plate and it is defined in 
chapter io, [2]; [D*] is the elasticity matrix for orthotropic material and it is 
defined in chapter 10, [2] 

2.4. The stifness matrix for the shell element 

The stiffness matrix for the shell element may therefore be obtained by 
superimposing of the two matrices: The stiffness matrix for the plane stress 
finite element and the stiffness matrix for the bending plate. The shell element 
has 6 degrees of freedom at each node 

and the appropriate "forces" as 

The relationship between the corresponding nodal displacements is as follows 

or 

[kim] 
[k,-m] 
[kmm] 
[kpm] 

In which, each stiffness matrix [krs] is now made up from the following submatrices 
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[k~.] 
0 0 0 0 
0 0 0 0 

[krs] = 
0 0 0 
0 0 [k~.] 0 
0 0 0 

0 0 0 0 0 0 

2.5. Transformation to global co-ordinates 

The stiffness matrix derived in the previous section used a system of local 
co-ordinates. Transformation of co-ordinates to a common global system (which 
now will be denote by x1y1 z', and the local system by xyz) will be necessary to 
assemble the elements and to write the appropriate equilibrium equations. The 
forces and displacements of a node transform from the global to the local system 
by a matrix L giving 

{6i} = [LJ{6f}, {Fi} = [LJ{Ff} 

in which 

[L] = [ ~ ~] 
with [.X] being a three by three matrix of direction cosines of angles formed between 
the two sets of axes. The stiffness matrix of an element in the global co-ordinates 
becomes 

2.6. Structural stiffness matrix 

We can write equilibrium equations for structure 

[K]{6} = {R} (2.1) 

where [K] is structural stiffness matrix, and it is assembled from the stiffness ma­
trices element by the standard way, { 6} is the nodal displacements of the structure, 
and {R} is the consistent load vector of the structure. The nodal displacements 
are obtained by solving the equation (2.1). The resulting displacements calculated 
are referred to the global system. 

The nodal displacements in the local system { 6}e are then computed by 

{6}e = (T]{6'} 
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These displacements can be decomposed into in-plane displacement { cSP} and bend­
ing displacements { 611 }. The element stresses can be obtained as follows 

{uP}= (D](B]{cSP} = (S~'){6"} 

{ u"} = (D*](B*){ cS"} = (S"]{ 66}. 

The stress at arbitrary point in the element is a combination of the above in 
plane stresses and bending stresses. The strain at arbitrary point in the element 
is defined as follows 

{e:P} = (B]{cSP} 

{e:"} = [B*]{c5,}. 

3. A procedure for solving the problem 

FEA, consultancy department is a UK leader in the application of finite 
element technology. The LUSAS of FEA was recognized in the course of different 
application led to the development of more sophisticated general systems. 

The goffered cylindrital shells is calculated by using L USAS program. 

At first, we must established the function coordinates refer to the co-ordinates 
of all the nodal points. The shell is devided into the subdivisions following 

Subdivision 1 

(i- l)7r 
Yli = Rcos ---'--­

n 
. (i- l)7r 

z 1i=R-Rsm (i=1,2, ... ,n+l) 
n 

n is element numbers are devided refer to the directional cross vault 

Subdivision 2 

H _ 4H2 + l~- 4lla _ H . (21ra) 
1- SH - sm 7; 

x 2 =a 

(i- l)7r 
Y2i = (H1 + R) cos....;....___..:.._ 

n 
. (i-l)7r 

z2i = R- (R +HI) sm -'----'-­
n 
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Subdivision 3 

Subdivision 4 

Subdivision 5 

Subdivision 6 

Subdivision 7 

Subdivision 8 

Subdivision 9 

Yai = (H + R) cos -=-(i_-_1....:.)_11" 
n 
(i- 1)11" 

Zai = R - ( R + H) sin -=-----=-­
n 

H _ 4H
2 +l~- 4l2b _ H . (2d•) 

2 - BH - sm l2 

(i- 1)w 
Yai = ( R - H 2) cos -=-----=--

n 
· (i -I)• 

Zai = R- (R- H2) sin-=-----=-­
n 

Ysi = Y6i; zsi = Zai 
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The second step is the determination of material properties. By using the 
homogenization method, the multilayered composite material reduces to the 
orthotropic material. 

The third step is the insertion of prescribed loading conditions 

1) Uniform distributed load p from outside 

2) Uniform distributed load p from inside 

3) Wind load 

Diagram of wind load is under the form 

z 

Q.6P 

0 

-o.sP 

-O.BP 

Tt 
2 

The final step is the insertion of prescribed boundary conditions 

The boundary lines along generating line are strictly clamped. 

The remains are free or simply supported. 

4. Numerical results 

1) Data input : n=20 

R=6190mm 

l1 = 370mm 

L = 17000mm 

H= 188mm 

l2 = 190mm 

h=5mm 

E 1 = E 2 = 25000 Nfmm2 , '1 = 0.15, G = 3000 Nfmm2 , p = 0.00147 N/mm2 
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2) Static analysis 

Numerical results on displacements, internal forces and moments are obtained 
for various kinds of external loads and different boundary conditions. We repre­
sented some typical cases 

Case 1 - Uniform distributed load p from outside 

- The boundary lines along generating line are strictly clamped and the 
remains are free. Fig. 2 shows the deflection on middle line of the cross-section of 
the shell. 

The internal forces indicated in Fig. 3, Fig. 4 and Fig. 5. 

The bending moments indicated in Fig. 6, Fig. 7 and Fig. 8 
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Case 2. - Wind load 

- The boundary lines .alo~g generating line are strictly clamped and the 
remains are. free Fig. 9 shows the deflection on middle line of the cross-section of 
the shell. 
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The internal forces indicated in Fig. 9, Fig. 10, Fig. 11 and Fig. 12 

The bending moments indicated in Fig.13, Fig.14 and Fig.15 
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Comment 

The finite element method implies an idealization of the shell as an assemblage 
of discrete structural elements. Calculate results are found the results of argument. 
It is seem that the boundary conditions, loads and shape are symmetric then the 
deflection and internal forces are symmetric. 

Conversely, it is not the case for the wind load (asymmetric). 

5. Conclusions 

In this paper, by using the finite element method, the goffred multilayered 
composite cylindrical shells is directly calculated without assumptions. The author 
would like to thank Prof. D. Sc. Dao Huy Bich for helping her in completing this 
work. This paper is completed with financial support from the National Basis 
Research Programe in Natural Sciences. 
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TINH TOAN VO COMPOSIT LUQ'N SONG NiiiEU LOP 

BANG PHUONG PHAP PHAN Ttr HUU H~N 

Trong bai bao nay, VO tr\). composite nhieu lap h.rgn song dU'g'C tfnh toan tr\fC 
ti~p b~ng phmrog phap phan ttl- hfru ht,m. Cac k~t qua so Ia chuy~n v!, n(>i 1\fc 
Va mo men dc~.t dU'g'C cho cac }o~i khac nhau ella tai trqng ngoai va cac dfeu ki~n 
bien khac nhau. 
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