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1. Introduction

Multilayered composite plates have wide applications in modern engineerings:
civil engineering, transportation, aerospace, aviation, ocean engineering ... At
present, research problems are concentered on the calculation and design of com-
posite structures, including: solution to static, dynamic and stability problems of
multilayered composite structures; analysis of the affects of the connection and
laminar alignments of materials on the plate working capacity; the optimization
of structures of multilayered composite plates... This paper presents some results
in studying the static and dynamic problems of multilayered composite plates, of
which individual layer is made of unidirectional composite material. Calculations
are based on the technical theory of laminar plates combined with using finite
element method.

2. Formulation of the problem and method of solution

Consider a n-layered thin plate of which every laminar is composed of unidi-
rectional composite materials (Fig.1).
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Fig. 1
We have a general vibration equation:

[M{d} +[Cl{g} + [K{q} = {F(t)}- (2.1)

89



For the problem of free vibration, without damping, (2.1) can be written as:

[M]{d} + [K]{q} = O. (2.2)

For the static problem, the equilibrium equation is of the form:

[K{q} = F . (2-3)

where : ‘
[M], [C], [K] - the mass, damping and stiffness matrices of plate, respectively;

{a}, {4}, {4} - the vectors of nodal displacements, velocities and accelerations,
respectively.

{F(t)} - the nodal force vector.

To solve the above problems, matrices K], [M], [C] must be defined. These
matrices are built on stiffness matrix [K¢], mass matrix [M°] of element. Using
rectangular elements for composite plate problems (Fig. 2), at node ¢ there are five
degrees of freedom:

{a}; = {viwivipi}".

A corresponding force vector is:
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Fig. 2

The shape functions of displacements are chosen in form of polynomial ex-
pressions as in plate flexure problem and plane elasticity problem of homogeneous
materials {3, 5]. We have a relationship between displacements within element and
nodal displacements of element as follows:

{u"} = [fl{g}e | (2.4)

1
where:



* {u*} = {u v w}T - vector of displacements within element.

* [f] - matrix of shape function.
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* {q}. - vector of nodal displacement of element:
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| T
{g}e = {ulviwlsamsoy;“zvzwzwzs‘Pyzui"”sws‘p%‘PVa“4”4w4‘Pz4‘Py4} '
If now notations could be used as:

) du dv sdu  Ov\ O’w dw Jw T

1 ={5: 5 (5 * 5:) 5 a7 230y}
T

{a*} =,{Nz Ny Ny M: My M.y}

then components of the element stiffness matrix are determined by:
a b
T *
= // {e'}; {0}, dzdy. (2.5)
0 0
The stress-strain relationship for the Kkt layer as follows

= [4 )e

in which:
[A], [B], [ D] - the inplane, bending-inplane and bending matrices, respectively

A A Ags By, Biz Bis
[A] = | As1x A2z Aazs|; [Bl=|Ba B2z Bas|;
Azp Az Aszz B3, Bszz Bas
Du1 D1z Dy
(D] Da1 D32 Dyg
D3y D3z Dss

with

[4] = Z / [G)*dz; [B] = Z / [GJfzdz; D) = Z / [G]*2%dz, (2.7)

=1 k 1 k 1 k 1 k*l k 1
where [G’]’c - a k** laminar stiffness matrix:

§ q11 912 916
G]* = | 912 922 926 (2.8)
g6 926 YGes

The components gf; (7,5 = 1,2,6) are determined from elastic constants of fibre
and matrix materials of the kt* layer.

92



If all coefficients of the matrix [G]* are constants with respect to individual
laminar thickness then we have:

n

(4] = 61w - zea)i (B = 2 lG1HeE - 52
k=1

k=1

D] = 3 Y161 (e - #-) (29)
k=1

The components element mass matrix can be determined as following

[Me] = / (717 ol f1aV. (2.10)

By homogenization method [1] , we have:

el = [T asIav. (2.11)

Components of matrix [G])* and (p) (average density of composite material) are
determined by homogenization method in mechanics of composite materials [1, 5].

From the above described expressions and equations, the matrices [K], [M],
[C] of plate can be established for solution to the static, natural vibration and
forced vibration problems of multilayered composite plate using finite element
technique

3. Investigation of the affect of geometric and physical factors on
working capacity of mulilayered composite materials

A thin laminated plate is considered as shown in Fig.3
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Material properties of layers for composite plate as shown in table 1

Table 1
Material E, E, v v Pe Pn
type  (kG/em?) (kG/cm?) ‘ " (kg/em3) (kg/em3) .
1 39.10° 7.10° 0.3 0.3 0.00185 0.0027 0.4
2 13-10° 7.10° 0.3 0.3 0.028 0.0027 0.4

Introducing some notations:
- Uniform distributed loads on over plate p, = 0.1kG/cm?,
- All edges of plate are clamped,

-0 = \/ (02 — 0y)? + 472, - equivalent stress,

- K; : dynamic coefficient,

- wp : 1** natural frequency of vibration.

And using following algorithms for:

- Solving static problem by Gauss Elimination Method.

- Solving natural vibration problems by Subspace Iteration Method.

- Solving forced vibration problems by Mode Superposition Method.

We can investigate a series of specific problems. We represent some results of
calculations in following aspects:
1.1. The affect of the laminar arrangement order

Note that:

- Laminar material with fibre angle 0 has label 1
- Laminar material with fibre angle 45 has label 2
- Individual laminar thickness equals to 0.75 cm
- Layers are aligned in different orders (table 2)

Table 2
Layer label Cases
2 3 4
1 0 45 0 0
2 45 0 45 0
3 45 0 0 45
4 0 45 45 45
Results: : s

1t* case: Wmax = 0.0212¢m; Upax = 0; V, a.x2= 0;
" wo = 4.795Hz; 01g = 225.26kG/cm*; Kz = 1.180

oth Wmax = 0.0242cm; Uppax = 0; Vipax = 0:

€BS€' wo = 4.556 Ha; 0y = 235.25 kG cm?; Ky = 1.193
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W = 0.0226 cm; U, = 0.0000427 cm; V, = 0.0000174cm;
case: wom;x4.740 Hz ; at; =n§a:1xl.02 kG/cm?; Kd’=nll?’l‘83 ’

. Wmax = 0.0228 cm; Upax = 0.0000599 cm; Vinax = 0.0000351 cm;
case: wo = 4.7122 Hz; 014 = 242.00kG/cm?; K4 = 1.184.

Remark: For arrangement of layers in 1th case, the multilayered composite plate
stiffness is obtained more than other cases. Arrangement of layers in 3** case and
4th gives values of displacement u and v different from zero. This shows that there
is inplane-bending effect.

1.2. The affect of the fibrous directions
In order to investigate this factor, the 5 - layered composite plate is chosen,
of which layers are aligned by rule as shown in table 3.

3th

4th

Table 3
) Material Fibrous anglep Thickness
Laminar
type (degree) (cm)
1 1 +p 0.6
2 2 —p 0.6
3 2 +p 0.6
4 2 —p 0.6
5 1 +p 0.6

Let ¢ angle between fibrous direction and z-axis at the plate vary from 0°
to 180° we investigate the variation of static displacement wl‘mx, 1** natural fre-
quency wg and dynamic coefficient K.

Results: the relations of those parameters with angle ¢ are shown by diagrams in
fig. 4 -6,

Remark: analysing these graphics we can see that: in cases ¢ = 75° and ¢ = 105°
obtained deflections are minimum and natural frequency wg are maximum. It
shows that in these examples, the composite plate has maximum stiffness values.
In addition, dynamic coefficient K is minimum corresponding with these 2 fibrous
angles.
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Fig. 4. Relation of deflection wfnax and fibrous angle
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Natural frequency
(Hz)

0 15 30 45 60 75 90 105 120 135 150 165 180
Fibrous angle (degree)
Fig. 5. Relation of 1t natural frequency wo and fibrous angle
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Fig. 6. Relation of dynamic coefficient Kg and fibrous angle

1.3. The affects of the material characteristic parameters

The ratios E./E,, and p./p, characterise the properties of fibre and matrix
materials. Affects of those ratios on working capacity of composite can be seen by
investigating the following problem:

Multilayered composite plate consisting of n = 5 layers are aligned as shown
in table 4.

Table 4
Laminar Fibrous angle ¢ (degree) - Thickness (cm)
1 45 0.6
2 -45 0.6
3 45 0.6
4 45 0.6
5 -45 0.6

In order to research the variation of displacements, stresses, natural frequen-
cies we solve static, natural vibration and forced vibration problems when varying
ratios E./E, and p./p,. Using obtained results we buil diagrams between w} ..,
wo, Kq and ratios E./E,, p./pn (see fig. 7 = 11).
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Fig. 7. Relation of deflection wztnax and E./E,,
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3

5 ¢ B

g_ ¢

OF AN S D

E L2 — _ —

: 0 —

S 1 10 20 30 40 50 60 70 8 90

A/ Pn
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Fig. 11. Relation of dynamic coefficient K4 and p./p,,

4. Conclusion

On the basis of laminar plate theory and using finite element technique we
can solve static and dynamic problems of multilayered composite plates subject-
ed to arbitrary loading and boundary conditions. From obtained results some

conclusions can be drawn as follows:

97



- Fibrous directions with respect to common coordinate of plate have a clear
effect on working capacity of the plates. In the example of fibre angle ¢ of about
75° and 105°, composite plates have maximum stiffness.

- The relations between elastic modul and density of the fibre and matrlx
materials have a clear effect on the working of the plates.

- We can arrange layers with appropriate fibrous angles and chosen material
for obtaining multilayered composite plates satisfying application purposes.
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MOT sO KET QUA NGHIEN CUU TAM COMPOSIT NHIEU LOP

Bai bdo trinh bay mét s6 két qud tinh todn tdm composite nhiéu 16p bing
phwong phip thuin nhét héa. Céc tic gid da st dung thudt todn cia phuwong
phép phan ti& hiru han dé gidi céc bai toin tinh va déng t4m composite nhiéu 1ép
¢é cdu tric phtrc tap. Qua khdo sdt mét s8 vi du tinh toin, cic tic gid da nghién
cttu dnh hudng cda cdc yéu t8 hinh hoc va vat Iy cia cdc pha vit liéu dén khd
ndng lam viéc cda tdm composite nhiéu léop.
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